We investigate the potential for the eLISA space-based interferometer to detect the stochastic gravitational wave background produced by strong first-order cosmological phase transitions. We discuss the resulting contributions from bubble collisions, magnetohydrodynamic turbulence, and sound waves to the stochastic background, and estimate the total corresponding signal predicted in gravitational waves. The projected sensitivity of eLISA to cosmological phase transitions is computed in a model-independent way for various detector designs and configurations. By applying these results to several specific models, we demonstrate that eLISA is able to probe many wellmotivated scenarios beyond the Standard Model of particle physics predicting strong first-order cosmological phase transitions in the early Universe.
The topic of cosmic strings provides a bridge between the physics of the very small and the very large. They are predicted by some unified theories of particle interactions. If they exist, they may help to explain some of the largest-scale structures seen in the Universe today. They are 'topological defects' that may have been formed at phase transitions in the very early history of the Universe, analogous to those found in some condensed-matter systems -vortex lines in liquid helium, flux tubes in type-II superconductors, or disclination lines in liquid crystals. In this review, we describe what they are, why they have been hypothesized and what their cosmological implications would be. The relevant background from the standard models of particle physics and cosmology is described in section 1. In section 2, we review the idea of symmetry breaking in field theories, and show how the defects formed are constrained by the topology of the manifold of degenerate vacuum states. We also discuss the different types of cosmic strings that can appear in different field theories. Section 3 is devoted to the dynamics of cosmic strings, and section 4 to their interaction with other fields. The formation and evolution of cosmic strings in the early Universe is the subject of section 5, while section 6 deals with their observational implications.Finally, the present status of the theory is reviewed in section 7.
We investigate the potential for observing gravitational waves from cosmological phase transitions with LISA in light of recent theoretical and experimental developments. Our analysis is based on current state-of-the-art simulations of sound waves in the cosmic fluid after the phase transition completes. We discuss the various sources of gravitational radiation, the underlying parameters describing the phase transition and a variety of viable particle physics models in this context, clarifying common misconceptions that appear in the literature and identifying open questions requiring future study. We also present a web-based tool, PTPlot, that allows users to obtain up-to-date detection prospects for a given set of phase transition parameters at LISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.