Healthy individuals (n = 40) performed index finger tapping at freely chosen frequency during repeated bouts and before and after near-maximal muscle action consisting of 3 intense flexions of the index finger metacarpal phalangeal joint. One experiment showed, unexpectedly, that a bout of tapping increased the tapping frequency in the subsequent bout. Thus, a cumulating increase of 8.2 ± 5.4% (p < .001) occurred across 4 bouts, which were all separated by 10 min rest periods. Follow-up experiments revealed that tapping frequency was still increased in consecutive bouts when rest periods were extended to 20 min. Besides, near-maximal muscle activation, followed by 5 min rest, did not affect the tapping frequency. In conclusion, freely chosen tapping frequency was increased in repeated bouts of tapping, which were separated by 10-20 min rest periods. The observed phenomenon is suggested to be termed repeated bout rate enhancement.
. (2017). Vertical finger displacement is reduced in index finger tapping during repeated bout rate enhancement. Motor Control, 21(4), 457-467. https://doi.org/10.1123/mc.2016-0037 General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policyIf you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim. , corresponding to 6.0±11.0%, p=.033) was accompanied by reduced vertical displacement (1.6±2.9 mm, corresponding to 6.3±14.9%, p=.012) of the fingertip. Concurrently, peak force was unchanged. The present study points at separate control mechanisms governing kinematics and kinetics during finger tapping.
The authors investigated the effects of 2 weeks of heavy index finger strength training on characteristics of freely chosen finger tapping including tapping frequency, tap force, and finger displacement. One group (n = 12) performed index finger extension and flexion strength training. A control group (n = 12) performed no intervention. Results showed that the training group increased strength in both extension (19.5 ± 22.2%, p = .015) and flexion (9.4 ± 9.8%, p = .001) from pretest to posttest. Furthermore, training did not affect the frequency and the pattern of the tapping movement (Fs = 0.004-3.441, ps = .077-.954). The present results are in contrast to previous findings of reduced movement frequency and altered movement pattern during ergometer pedaling after strength training. This difference may be explained by the dissimilarity between the 2 tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.