Stochastic learning automata and genetic algorithms (GAs) have previously been shown to have valuable global optimization properties. Learning automata have, however, been criticized for having a relatively slow rate of convergence. In this paper, these two techniques are combined to provide an increase in the rate of convergence for the learning automata and also to improve the chances of escaping local optima. The technique separates the genotype and phenotype properties of the GA and has the advantage that the degree of convergence can be quickly ascertained. It also provides the GA with a stopping rule. If the technique is applied to real-valued function optimization problems, then bounds on the range of the values within which the global optima is expected can be determined throughout the search process. The technique is demonstrated through a number of bit-based and real-valued function optimization examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.