Big brown bats (Eptesicus fuscus) emit wideband, frequencymodulated biosonar sounds and perceive the distance to objects from the delay of echoes. Bats remember delays and patterns of delay from one broadcast to the next, and they may rely on delays to perceive target scenes. While emitting a series of broadcasts, they can detect very small changes in delay based on their estimates of delay for successive echoes, which are derived from an auditory time͞frequency representation of frequency-modulated sounds. To understand how bats perceive objects, we need to know how information distributed across the time͞frequency surface is brought together to estimate delay. To assess this transformation, we measured how alteration of the frequency content of echoes affects the sharpness of the bat's delay estimates from the distribution of errors in a psychophysical task for detecting changes in delay. For unrestricted echo frequency content and high echo signal-to-noise ratio, bats can detect extremely small changes in delay of about 10 ns. When echo bandwidth is restricted by filtering out low or high frequencies, the bat's delay acuity declines in relation to the reciprocal of relative echo bandwidth, expressed as Q, which also is the relative width of the target impulse response in cycles rather than time. This normalized-time dimension may be efficient for target classification if it leads to target shape being displayed independent of size. This relation may originate from cochlear transduction by parallel frequency channels with active amplification, which creates the auditory time͞frequency representation itself.
The big brown bat, Eptesicus fuscus, navigates and hunts prey with echolocation, a modality that uses the temporal and spectral differences between vocalizations and echoes from objects to build spatial images. Closely spaced surfaces ("glints") return overlapping echoes if two echoes return within the integration time of the cochlea ( approximately 300-400 micros). The overlap results in spectral interference that provides information about target structure or texture. Previous studies have shown that two acoustic events separated in time by less than approximately 500 micros evoke only a single response from neural elements in the auditory brain stem. How does the auditory system encode multiple echoes in time when only a single response is available? We presented paired FM stimuli with delay separations from 0 to 24 micros to big brown bats and recorded local field potentials (LFPs) and single-unit responses from the inferior colliculus (IC). These stimuli have one or two interference notches positioned in their spectrum as a function of two-glint separation. For the majority of single units, response counts decreased for two-glint separations when the resulting FM signal had a spectral notch positioned at the cell's best frequency (BF). The smallest two-glint separation that reliably evoked a decrease in spike count was 6 micros. In addition, first-spike latency increased for two-glint stimuli with notches positioned nearby BF. The N(4) potential of averaged LFPs showed a decrease in amplitude for two-glint separations that had a spectral notch near the BF of the recording site. Derived LFPs were computed by subtracting a common-mode signal from each LFP evoked by the two-glint FM stimuli. The derived LFP records show clear changes in both the amplitude and latency as a function of two-glint separation. These observations in relation with the single-unit data suggest that both response amplitude and latency can carry information about two-glint separation in the auditory system of E. fuscus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.