Paralympic classification systems aim to promote participation in sport by people with disabilities by controlling for the impact of impairment on the outcome of competition. Valid systems of classification ensure that successful athletes are those who have the most advantageous combination of anthropometric, physiological, and/or psychological attributes, and who have enhanced them to the best effect. Classification systems that are not valid pose a significant threat to Paralympic sport and, therefore, the International Paralympic Committee (IPC) has a Classification Code which includes policy commitment to the development of evidence-based methods of classification. The aim of this article is to provide an overview of current best practice in classification for athletes with physical impairments, and to update research advances in the area. Currently, classification has 4 stages: (1) establish whether the athlete has a health condition that will lead to one or more of the 8 eligible types of physical impairment, (2) determine whether the athlete has an eligible impairment type, (3) determine whether the impairment is severe enough, and (4) determine in what class the athlete should compete. A sequential 4-step process that outlines how to initiate and develop evidence-based methods of classification is described: (1) specification of impairment types that are eligible for the sport; (2) development of valid measures of impairment(s); (3) development of standardized, sport-specific measures of performance; and (4) assessment of the relative strength of association between measures of impairment and measures of performance. Of these, the development and reporting of valid measures of impairment is currently the most pressing scientific challenge in the development of evidence-based methods of classification.
The purpose of this study was to concurrently determine the effect that plyometric and isometric training has on tendon stiffness (K) and muscle output characteristics to compare any subsequent changes. Thirteen men trained the lower limbs either plyometrically or isometrically 2-3 times a week for a 6-week period. Medial gastrocnemius tendon stiffness was measured in vivo using ultrasonography during ramped isometric contractions before and after training. Mechanical output variables were measured using a force plate during concentric and isometric efforts. Significant (p < 0.05) training-induced increases in tendon K were seen for the plyometric (29.4%; 49.0 +/- 10.8 to 63.4 +/- 9.2 N x mm(-1)) and isometric groups (61.6%; 43.9 +/- 2.5 to 71.0 +/- 7.4 N x mm(-1)). Statistically similar increases in rate of force development and jump height were also seen for both training groups, with increases of 18.9 and 58.6% for the plyometric group and 16.7 and 64.3% for the isometric group, respectively. Jump height was found to be significantly correlated with tendon stiffness, such that stiffness could explain 21% of the variance in jump height. Plyometric training has been shown to place large stresses on the body, which can lead to a potential for injury, whereas explosive isometric training has been shown here to provide similar benefits to that of plyometric training with respect to the measured variables, but with reduced impact forces, and would therefore provide a useful adjunct for athletic training programs within a 6-week time frame.
The purpose of this investigation was to determine whether the magnitude of adaptation to integrated ballistic training is influenced by initial strength level. Such information is needed to inform resistance training guidelines for both higher- and lower-level athlete populations. To this end, two groups of distinctly different strength levels (stronger: one-repetition-maximum (1RM) squat = 2.01 ± 0.15 kg·BM ; weaker: 1.20 ± 0.20 kg·BM ) completed 10 weeks of resistance training incorporating weightlifting derivatives, plyometric actions, and ballistic exercises. Testing occurred at pre-, mid-, and post-training. Measures included variables derived from the incremental-load jump squat and the 1RM squat, alongside muscle activity (electromyography), and jump mechanics (force-time comparisons throughout the entire movement). The primary outcome variable was peak velocity derived from the unloaded jump squat. It was revealed that the stronger group displayed a greater (P = .05) change in peak velocity at mid-test (baseline: 2.65 ± 0.10 m/s, mid-test: 2.80 ± 0.17 m/s) but not post-test (2.85 ± 0.18 m/s) when compared to the weaker participants (baseline 2.43 ± 0.09, mid-test. 2.47 ± 0.11, post-test: 2.61 ± 0.10 m/s). Different changes occurred between groups in the force-velocity relationship (P = .001-.04) and jump mechanics (P ≤ .05), while only the stronger group displayed increases in muscle activation (P = .05). In conclusion, the magnitude of improvement in peak velocity was significantly influenced by pre-existing strength level in the early stage of training. Changes in the mechanisms underpinning performance were less distinct.
Cluster analysis of isometric strength tests produced classes comprising athletes who experienced a similar degree of activity limitation. The strength tests reported can provide the basis for a new, more transparent, less subjective wheelchair racing classification system, pending replication of these findings in a larger, representative sample. This paper also provides guidance for development of evidence-based systems in other Para sports.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.