Fire slows Amazon forest regrowth DJ Zarin et al. 366www.frontiersinecology.org
Synthetic Aperture Radar (SAR), as an active sensor transmitting long wavelengths, has the advantages of working day and night and without rain or cloud disturbance. It is further able to sense the geometric structure of forests more than passive optical sensors, making it a valuable tool for mapping forest Above Ground Biomass (AGB). This paper studies the ability of the single- and multi-temporal C-band Sentinel-1 and polarimetric L-band PALSAR-2 data to estimate live AGB based on ground truth data collected in New England, USA in 2017. Comparisons of results using the Simple Water Cloud Model (SWCM) on both VH and VV polarizations show that C-band reaches saturation much faster than the L-band due to its limited forest canopy penetration. The exhaustive search multiple linear regression model over the many polarimetric parameters from PALSAR-2 data shows that the combination of polarimetric parameters could slightly improve the AGB estimation, with an adjusted R2 as high as 0.43 and RMSE of around 70 Mg/ha when decomposed Pv component and Alpha angle are used. Additionally, the single- and multi-temporal C-band Sentinel-1 data are compared, which demonstrates that the multi-temporal Sentinel-1 significantly improves the AGB estimation, but still has a much lower adjusted R2 due to the limitations of the short wavelength. Finally, a site-level comparison between paired control and treatment sites shows that the L-band aligns better with the ground truth than the C-band, showing the high potential of the models to be applied to relative biomass change detection.
This paper presents a method based on angle-gauge sampling useful for inventorying downed coarse woody material in forest stands. The method is closely related to transect relascope sampling, except that sample points are used rather than line transects. The estimators for the total and per unit area are given along with the estimators of their variances. Methods for handling both borderline material and boundary overlap situations are also presented.Résumé : Cet article présente une méthode basée sur l'échantillonnage par jauge d'angle pour inventorier les gros débris ligneux dans les peuplements forestiers. La méthode est très proche de l'échantillonnage au relascope par transect, sauf que les points échantillons sont utilisés à la place des lignes de transect. Les estimateurs pour le total et par unité de surface sont fournis avec les estimateurs de variance. Les méthodes qui tiennent compte des situations de bordure et de chevauchement sont aussi présentées.[Traduit par la Rédaction]
Background The double sampling method known as “big BAF sampling” has been advocated as a way to reduce sampling effort while still maintaining a reasonably precise estimate of volume. A well-known method for variance determination, Bruce’s method, is customarily used because the volume estimator takes the form of a product of random variables. However, the genesis of Bruce’s method is not known to most foresters who use the method in practice. Methods We establish that the Taylor series approximation known as the Delta method provides a plausible explanation for the origins of Bruce’s method. Simulations were conducted on two different tree populations to ascertain the similarities of the Delta method to the exact variance of a product. Additionally, two alternative estimators for the variance of individual tree volume-basal area ratios, which are part of the estimation process, were compared within the overall variance estimation procedure. Results The simulation results demonstrate that Bruce’s method provides a robust method for estimating the variance of inventories conducted with the big BAF method. The simulations also demonstrate that the variance of the mean volume-basal area ratios can be computed using either the usual sample variance of the mean or the ratio variance estimators with equal accuracy, which had not been shown previously for Big BAF sampling. Conclusions A plausible explanation for the origins of Bruce’s method has been set forth both historically and mathematically in the Delta Method. In most settings, there is evidently no practical difference between applying the exact variance of a product or the Delta method—either can be used. A caution is articulated concerning the aggregation of tree-wise attributes into point-wise summaries in order to test the correlation between the two as a possible indicator of the need for further covariance augmentation.
The potential benefits of planting trees have generated significant interest with respect to sequestering carbon and restoring other forest based ecosystem services. Reliable estimates of carbon stocks are pivotal for understanding the global carbon balance and for promoting initiatives to mitigate CO2 emissions through forest management. There are numerous studies employing allometric regression models that convert inventory into aboveground biomass (AGB) and carbon (C). Yet the majority of allometric regression models do not consider the root system nor do these equations provide detail on the architecture and shape of different species. The root system is a vital piece toward understanding the hidden form and function roots play in carbon accumulation, nutrient and plant water uptake, and groundwater infiltration. Work that estimates C in forests as well as models that are used to better understand the hydrologic function of trees need better characterization of tree roots. We harvested 40 trees of six different species, including their roots down to 2 mm in diameter and created species-specific and multi-species models to calculate aboveground (AGB), coarse root belowground biomass (BGB), and total biomass (TB). We also explore the relationship between crown structure and root structure. We found that BGB contributes ~27.6% of a tree’s TB, lateral roots extend over 1.25 times the distance of crown extent, root allocation patterns varied among species, and that AGB is a strong predictor of TB. These findings highlight the potential importance of including the root system in C estimates and lend important insights into the function roots play in water cycling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.