The mangrove rivulus (Kryptolebias marmoratus) is a small fish native to mangrove ecosystems in Florida, the Caribbean, Central America, and South America. This species is one of only two self-fertilizing, hermaphroditic vertebrates capable of producing offspring that are genetically identical to both the parent and all siblings. Long bouts of selfing result in individuals with completely homozygous genotypes, effectively allowing for the production of "clones." Rivulus is also extremely sensitive to environmental change, both during development and adulthood. Life-history traits, behavior, physiology, morphology, and even sexual phenotype are shaped to a large extent by the interaction of genes with the environment, and many of these traits appear to co-vary. True reaction norms can be generated for this species in much the same way as has been done for clonally reproducing invertebrates and plants that have contributed immensely to our understanding of the evolution of phenotypic plasticity. That is, rivulus provides the opportunity to place individuals with identical genotypes in many different environments at any point during ontogeny or adulthood. In addition, rivulus populations are characterized by high genotypic diversity, a luxury not afforded by many clonal vertebrates, which allows us to evaluate variation among genotypes in the shape of reaction norms and in patterns of covariance among traits. We provide background information on phenotypic plasticity and phenotypic integration, coupled with a description of characteristics that we feel qualify rivulus as a potentially powerful model in which to study the evolution of reaction norms and covariance among traits.
Cold tolerance, the ability to cope with low temperature stress, is a critical adaptation in thermally variable environments. An individual's cold tolerance comprises several traits including minimum temperatures for growth and activity, ability to survive severe cold, and ability to resume normal function after cold subsides. Across species, these traits are correlated, suggesting they were shaped by shared evolutionary processes or possibly share physiological mechanisms. However, the extent to which cold tolerance traits and their associated mechanisms covary within populations has not been assessed. We measured five cold tolerance traits—critical thermal minimum, chill coma recovery, short‐ and long‐term cold tolerance, and cold‐induced changes in locomotor behavior—along with cold‐induced expression of two genes with possible roles in cold tolerance (heat shock protein 70 and frost)—across 12 lines of Drosophila melanogaster derived from a single population. We observed significant genetic variation in all traits, but few were correlated across genotypes, and these correlations were sex‐specific. Further, cold‐induced gene expression varied by genotype, but there was no evidence supporting our hypothesis that cold‐hardy lines would have either higher baseline expression or induction of stress genes. These results suggest cold tolerance traits possess unique mechanisms and have the capacity to evolve independently.
Tolerance of climatic stressors is an important predictor of the current distribution of insect species, their potential to invade new environments, and their responses to rapid climate change. Cold stress causes acute injury to nerves and muscles, and here we tested the hypothesis that low temperature causes sublethal deficits in locomotor behaviors that are dependent on neuromuscular function. To do so, we applied a previously developed assay, the rapid iterative negative geotaxis (RING) assay, to investigate behavioral consequences of cold stress in Drosophila melanogaster. The RING assay allows for rapid assessment of negative geotaxis behavior by quantifying climbing height and willingness to climb after cold stress. We exposed flies to cold stress at 0°C and assessed the extent to which duration of cold stress, recovery time, and cold acclimation influenced climbing performance. There was a clear dose‐response relationship between cold exposure and performance deficits, with climbing height and willingness decreasing as cold exposure increased from 2 to 24 hr. Following cold exposure of an intermediate duration (12 hr), climbing height and willingness gradually improved as recovery time increased from 4 to 72 hr but flies never fully recovered. Finally, cold acclimation improved overall climbing height and willingness in both untreated and cold‐stressed flies but did not prevent a reduction in climbing performance. Thus, cold stress causes deficits in locomotor and behavior that are dependent on the dose of cold exposure and persist long after the stress subsides. These results likely have implications for the ecological and evolutionary responses of insect populations to thermally variable environments.
Social experiences can be useful sources of information for animals charged with making fitness‐related decisions. Fighting experience can alter an animal's perception of its fighting ability possibly leading to changes in future contest decisions, which may increase/decrease their probability of winning future contests. Winner and loser effects have been revealed in a wide array of animals, but studies using reptilian models are rare. This study investigated the impact of fighting experience on future contest performance and outcome in the green anole lizard and investigated the assessment strategies used by anoles during contests of different intensities. To determine whether the green anole expresses winner or loser effects, focal animals engaged in a primary contest with a smaller (larger) opponent to gain a winning (losing) experience; opponent size asymmetries were a significant predictor of contest outcome. Focal individuals were isolated for 2 d before being given a secondary contest with a size‐matched, naïve opponent. We found no evidence of winner or loser effects 2 d following a previous contest. Although previous contest outcome did not dictate future contest success, dynamics of the previous contest did. Highly aggressive primary contest losers won a significant proportion of the secondary contests, while less aggressive losers were more apt to lose the secondary contest. Secondary contest success of prior winners was not influenced by earlier contest performance. Further analyses of contest dynamics reveal that individuals may use different assessment strategies depending on the intensity of the contest. Our results demonstrate that future contest success may be driven more by individual performance in a prior contest and less by prior contest outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.