Control of viremia in natural human immunodeficiency virus type 1 (HIV-1) infection in humans isassociated with a virus-specific T-cell response. However, still much is unknown with regard to the extent of CD8 ؉ cytotoxic T-lymphocyte (CTL) responses required to successfully control HIV-1 infection and to what extent CTL epitope escape can account for rises in viral load and ultimate progression to disease. In this study, we chose to monitor through full-length genome sequence of replication-competent biological clones the modifications that occurred within predicted CTL epitopes and to identify whether the alterations resulted in epitope escape from CTL recognition. From an extensive analysis of 59 biological HIV-1 clones generated over a period of 4 years from a single individual in whom the viral load was observed to rise, we identified the locations in the genome of five CD8 ؉ CTL epitopes. Fixed mutations were identified within the p17, gp120, gp41, Nef, and reverse transcriptase genes. Using a gamma interferon ELIspot assay, we identified for four of the five epitopes with fixed mutations a complete loss of T-cell reactivity against the wild-type epitope and a partial loss of reactivity against the mutant epitope. These results demonstrate the sequential accumulation of CTL escape in a patient during disease progression, indicating that multiple combinations of T-cell epitopes are required to control viremia.
Viral compartmentalization between naïve and memory CD4+ T cell subsets has been described, but only for individuals who were receiving antiretroviral therapy (ART). We present here an extensive analysis of the viral quasispecies residing in the naïve, central and effector memory CD4+ T cell subsets in a number of therapy naïve individuals and representing an array of HIV-1 subtypes. We longitudinally analyzed subset-specific infection and evolution in a subtype B infected individual who switches from CCR5 to dual CCR5/CXCR4 coreceptor usage. We show that the central memory subset, the predominantly infected subset, harbors a more diverse viral population compared to the others. Through sequence analysis of the env C2V3 region we demonstrate a lack of viral compartmentalization among all subsets. Upon coreceptor switch we observe a pronounced increase in the infection level of the naive population. Our findings emphasize the importance of all CD4+ T cell subsets to viral evolution.
We investigated whether development of mutations leads to loss of CD8 T-cell recognition in HIV-1 infection and is possibly linked to alterations in HIV-1-specific CD4(+) T-cell responses in 2 HIV-infected individuals. In patient, H434 full genome sequencing of HIV-1 biological clones at early and late time points during disease progression showed development of fixed mutations in 16 predicted HIV-specific CTL epitopes. Loss of T-cell recognition and reactivity against wild-type and mutant epitopes was observed primarily for the HLA-B27-restricted KK10 epitope and HLA-A2-restricted SL9 epitope. Similarly, in patient H671, decreasing numbers of HLA-A3-restricted CD8(+) T cells specific for the wild-type RK9 epitope was observed after CTL escape. Only in patient H434 loss of CTL responses was paralleled by a decrease in HIV-specific IL-2(+) CD4(+) T-helper responses. This suggests that loss of T-cell reactivity may not be directly linked to HIV-specific CD4(+) T-cell responses but that increased viremia after CTL escape may influence CD4(+) T-helper responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.