User adjustment of software generated contours is a viable strategy to reduce contouring time of OARs for lung radiotherapy while conforming to local clinical standards. In addition, deep learning contouring shows promising results compared to existing solutions.
The results of the challenge showed that the lungs and heart can be segmented fairly accurately by various algorithms, while deep-learning methods performed better on the esophagus. Our dataset together with the manual contours for all training cases continues to be available publicly as an ongoing benchmarking resource.
Introduction: Adequate head and neck (HN) organ-at-risk (OAR) delineation is crucial for HN radiotherapy and for investigating the relationships between radiation dose to OARs and radiation-induced side effects. The automatic contouring algorithms that are currently in clinical use, such as atlas-based contouring (ABAS), leave room for improvement. The aim of this study was to use a comprehensive evaluation methodology to investigate the performance of HN OAR auto-contouring when using deep learning contouring (DLC), compared to ABAS. Methods: The DLC neural network was trained on 589 HN cancer patients. DLC was compared to ABAS by providing each method with an independent validation cohort of 104 patients, which had also been manually contoured. For each of the 22 OAR contours-glandular, upper digestive tract and central nervous system (CNS)-related structures-the dice similarity coefficient (DICE), and absolute mean and max dose differences (|Dmean-dose| and |Dmax-dose|) performance measures were obtained. For a subset of 7 OARs, an evaluation of contouring time, inter-observer variation and subjective judgement was performed. Results: DLC resulted in equal or significantly improved quantitative performance measures in 19 out of 22 OARs, compared to the ABAS (DICE/|Dmean dose|/|Dmax dose|: 0.59/4.2/4.1 Gy (ABAS); 0.74/1.1/0.8 Gy (DLC)). The improvements were mainly for the glandular and upper digestive tract OARs. DLC significantly reduced the delineation time for the inexperienced observer. The subjective evaluation showed that DLC contours were more often preferable to the ABAS contours overall, were considered to be more precise, and more often confused with manual contours. Manual contours still outperformed both DLC and ABAS; however, DLC results were within or bordering the inter-observer variability for the manual edited contours in this cohort. Conclusion: The DLC, trained on a large HN cancer patient cohort, outperformed the ABAS for the majority of HN OARs.
Background and purpose: In radiotherapy, automatic organ-at-risk segmentation algorithms allow faster delineation times, but clinically relevant contour evaluation remains challenging. Commonly used measures to assess automatic contours, such as volumetric Dice Similarity Coefficient (DSC) or Hausdorff distance, have shown to be good measures for geometric similarity, but do not always correlate with clinical applicability of the contours, or time needed to adjust them. This study aimed to evaluate the correlation of new and commonly used evaluation measures with time-saving during contouring. Materials and methods: Twenty lung cancer patients were used to compare user-adjustments after atlas-based and deep-learning contouring with manual contouring. The absolute time needed (s) of adjusting the auto-contour compared to manual contouring was recorded, from this relative time-saving (%) was calculated. New evaluation measures (surface DSC and added path length, APL) and conventional evaluation measures (volumetric DSC and Hausdorff distance) were correlated with time-recordings and time-savings, quantified with the Pearson correlation coefficient, R. Results: The highest correlation (R = 0.87) was found between APL and absolute adaption time. Lower correlations were found for APL with relative time-saving (R = −0.38), for surface DSC with absolute adaption time (R = −0.69) and relative time-saving (R = 0.57). Volumetric DSC and Hausdorff distance also showed lower correlation coefficients for absolute adaptation time (R = −0.32 and 0.64, respectively) and relative timesaving (R = 0.44 and −0.64, respectively). Conclusion: Surface DSC and APL are better indicators for contour adaptation time and time-saving when using auto-segmentation and provide more clinically relevant and better quantitative measures for automaticallygenerated contour quality, compared to commonly-used geometry-based measures.
Machine learning approaches to problem-solving are growing rapidly within healthcare, and radiation oncology is no exception. With the burgeoning interest in machine learning comes the significant risk of misaligned expectations as to what it can and cannot accomplish. This paper evaluates the role of machine learning and the problems it solves within the context of current clinical challenges in radiation oncology. The role of learning algorithms within the workflow for external beam radiation therapy are surveyed, considering simulation imaging, multimodal fusion, image segmentation, treatment planning, quality assurance, and treatment delivery and adaptation. For each aspect, the clinical challenges faced, the learning algorithms proposed, and the successes and limitations of various approaches are analyzed. It is observed that machine learning has largely thrived on reproducibly mimicking conventional human-driven solutions with more efficiency and consistency. On the other hand, since algorithms are generally trained using expert opinion as ground truth, machine learning is of limited utility where problems or ground truths are not well-defined, or if suitable measures of correctness are not available. As a result, machines may excel at replicating, automating and standardizing human behaviour on manual chores, meanwhile the conceptual clinical challenges relating to definition, evaluation, and judgement remain in the realm of human intelligence and insight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.