Freshwater Fishes of North-Eastern Australia provides details of the ecology, systematics, biogeography and management of 79 species of native fish present in the region. It includes detailed information on their identification, evolutionary history, breeding biology, feeding ecology, movement patterns, macro-, meso- and micro-habitat use, water quality tolerances, conservation status and current threats, as well as environmental flow and management needs. Based on the results of extensive field surveys and a comprehensive review of existing literature, it is designed to assist environmental practitioners and managers to make informed decisions about future management strategies. It will also encourage a greater research effort into the region’s aquatic fauna by providing a comprehensive resource that enables other researchers to adopt a more quantitative and strategic framework for their research. Joint winner of the 2005 Whitley Medal.
1. The importance of hydrologic variability for shaping the biophysical attributes and functioning of riverine ecosystems is well recognised by ecologists and water resource managers. In addition to the ecological dependences of flow for aquatic organisms, human societies modify natural flow regimes to provide dependable ecological services, including water supply, hydropower generation, flood control, recreation and navigation. Management of scarce water resources needs to be based on sound science that supports the development of environmental flow standards at the regional scale. 2. Hydrological classification has long played an essential role in the ecological sciences for understanding geographic patterns of riverine flow variability and exploring its influence on biological communities, and more recently, has been identified as a critical process in environmental flow assessments. 3. We present the first continental-scale classification of hydrologic regimes for Australia based on 120 metrics describing ecologically relevant characteristics of the natural hydrologic regime derived from discharge data for 830 stream gauges. Metrics were calculated from continuous time series (15-30 years of record constrained within a 36-year period) of mean daily discharge data, and classification was undertaken using a fuzzy partitional method -Bayesian mixture modelling. 4. The analysis resulted in the most likely classification having 12 classes of distinctive flow-regime types differing in the seasonal pattern of discharge, degree of flow permanence (i.e. perennial versus varying degrees of intermittency), variations in flood magnitude and frequency and other aspects of flow predictability and variability. Geographic, climatic and some catchment topographic factors were generally strong discriminators of flow-regime classes. The geographical distribution of flow-regime classes showed varying degrees of spatial cohesion, with stream gauges from certain flow-regime classes often being non-contiguously distributed across the continent. These results support the view that spatial variation in hydrology is determined by interactions among climate, geology, topography and vegetation at multiple spatial and temporal scales. Decision trees were also developed to provide the ability to determine the natural flowregime class membership of new stream gauges based on their key environmental and ⁄ or hydrological characteristics.
Aim To identify key research questions and challenges that will, if addressed in a timely manner, significantly advance the field of freshwater fish biogeography and conservation. Location Globe. Methods By drawing on expertise from different regions of the world, we integrate an illustrative conspectus of recent scientific advancements in fish biogeography with a prospectus of needed areas of scientific inquiry to identify information gaps and priority research needs to advance the science. Results We identified the following core challenges: (1) Testing current and forging new theories in biogeography; (2) Advancing a trait‐based biogeography of freshwater fishes; (3) Quantifying extinction risk and loss of fish species in a changing environment; (4) Evaluating the magnitude and geography of extinction debt for freshwater fishes; (5) Elucidating the patterns and drivers of freshwater fish invasions; (6) Forecasting the future geography of freshwater fishes; (7) Understanding the interactive effects of multiple stressors in freshwater ecosystems; (8) Quantifying new features of the biodiversity crisis: fish faunal homogenization and the emergence of novel assemblages; (9) Promoting scientific rigour in emerging freshwater fish conservation strategies and (10) Improving conservation planning strategies for freshwater fish species. Main conclusions By reflecting on recent scientific progress in fish conservation biogeography, we have identified a set of core challenges and priorities requiring future research investment.
Hydrologic classification is one of the most widely applied tasks in ecohydrology. During the last two decades, a considerable effort has gone into analysis and development of methodological approaches to hydrologic classification. We reviewed the process of hydrologic classification, differentiating between an approach based on deductive reasoning using environmental regionalization, hydrologic regionalization and environmental classification whereby environmental variables assumed to be key determinants of hydrology are analysed and one based on inductive reasoning using streamflow classification whereby hydrologic data are analysed directly. We explored past applications in ecohydrology, highlighting the utility of classifications in the extrapolation of hydrologic information across sparsely gauged landscapes, the description of spatial patterns in hydrologic variability, aiding water resource management, and in the identification and prioritization of conservation areas. We introduce an overarching methodological framework that depicts critical components of the classification process and summarize important advantages and disadvantages of commonly used statistical approaches to characterize and predict hydrologic classes. Our hope is that researchers and managers will be better informed when having to make decisions regarding the selection and proper implementation of methods for hydrologic classification in the future. Copyright © 2011 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.