Stochastic pulsatile dynamics have been observed in an increasing number of biological circuits with known mechanism involving feedback control and bistability. Surprisingly, recent single-cell experiments in Escherichia coli flagellar synthesis showed that flagellar genes are activated in stochastic pulses without the means of feedback. However, the mechanism for pulse generation in these feedbackless circuits has remained unclear. Here, by developing a system-level stochastic model constrained by a large set of single-cell E. coli flagellar synthesis data from different strains and mutants, we identify the general underlying design principles for generating stochastic transcriptional pulses without feedback. Our study shows that an inhibitor (YdiV) of the transcription factor (FlhDC) creates a monotonic ultrasensitive switch that serves as a digital filter to eliminate small-amplitude FlhDC fluctuations. Furthermore, we find that the high-frequency (fast) fluctuations of FlhDC are filtered out by integration over a timescale longer than the timescale of the input fluctuations. Together, our results reveal a filter-and-integrate design for generating stochastic pulses without feedback. This filter-and-integrate mechanism enables a general strategy for cells to avoid premature activation of the expensive downstream gene expression by filtering input fluctuations in both intensity and time so that the system only responds to input signals that are both strong and persistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.