Summary The structure and chemical composition of bacterial spores differ considerably from those of vegetative cells. These differences largely account for the unique resistance properties of the spore to environmental stresses, including disinfectants and sterilants, resulting in the emergence of spore‐forming bacteria such as Clostridium difficile as major hospital pathogens. Although there has been considerable work investigating the mechanisms of action of many sporicidal biocides against Bacillus subtilis spores, there is far less information available for other species and particularly for various Clostridia. This paucity of information represents a major gap in our knowledge given the importance of Clostridia as human pathogens. This review considers the main spore structures, highlighting their relevance to spore resistance properties and detailing their chemical composition, with a particular emphasis on the differences between various spore formers. Such information will be vital for the rational design and development of novel sporicidal chemistries with enhanced activity in the future.
PAA treatment targets the spore membrane, with some of its activity directed specifically against the GerB and GerK germination receptors.
Summary Bacterial endospores (spores) have a higher intrinsic resistance to microbicides as compared to other microbial forms, most likely due to their impermeable outer layers and low water content. Though structural differences between the spores of various bacterial species may account for observed variations in their resistance to microbicides, flaws in methods for testing the sporicidal activity of microbicides often exaggerate the differences. This has major implications when considering the selection of one or more surrogates to assess microbicides against clinically relevant spore‐formers such as Clostridium difficile. The mounting significance of Cl. difficile as a pathogen is leading to a corresponding increase in the number of commercially available microbicidal formulations claiming activity against its spores without proper differentiation between the product's sporistatic and sporicidal actions. In this review we critically assess the situation and the implications of product claims on the field use of microbicidal products.
Recent work has shown that MFO induction and loss of control of steroid hormone production occurs in fish after exposure to pulp mill effluents, PCBs, PAHs, and some pesticides. We had recently developed laboratory assays to evaluate the effluents on these responses, but were lacking a protocol for a sediment assay. This paper describes the development of a sediment test capable of demonstrating MFO induction in fish. MFO responses were evident in rainbow trout within 4 days of exposure to contaminated sediments. Further testing showed that fish were responding to chemicals from the sediments, but not from bottom water, and a survey of sediment from thirteen contaminated areas showed that MFO induction more closely paralleled PAH levels in the sediments than the observed PCB concentrations. The sites showing MFO induction were also the sites where sediment toxicity was demonstrated with laboratory bioassays using Daphnia magna and Hyalella azteca. The protocol has been further refined to describe the quantity of sediment required and duration of testing. This test will enable us to study the biochemical effects of exposure to contaminated sediments. The protocol could also be used to prioritize areas of contamination and to evaluate dredging impacts and remediation success.
Southeast (SE) Asia holds high regional biodiversity and endemism levels but is also one of the world's most threatened regions. Local, regional and global threats could have severe consequences for the future survival of many species and the provision of ecosystem services. In the face of myriad pressing environmental problems, we carried out a research prioritisation exercise involving 64 experts whose research relates to conservation biology and sustainability in SE Asia. Experts proposed the most pressing research questions which, if answered, would advance the goals of biodiversity conservation and sustainable development in SE Asia. We received a total of 333 questions through three rounds of elicitation, ranked them (by votes) following a workshop and grouped them into themes. The top 100 questions depict SE Asia as a region where strong pressures on biodiversity interact in complex and poorly understood ways. They point to a lack of information about multiple facets of the environment, while exposing the many threats to biodiversity and human wellbeing. The themes that emerged indicate the need to evaluate specific drivers of biodiversity loss (wildlife harvesting, agricultural expansion, climate change, infrastructure development, pollution) and even to identify which species and habitats are most at risk. They also suggest the need to study the effectiveness of practice-based solutions (protected areas, ecological restoration), the human dimension (social interventions, organisational systems and processes and, the impacts of biodiversity loss and conservation interventions on people). Finally, they highlight gaps in fundamental knowledge of ecosystem function. These 100 questions should help prioritise and coordinate research, conservation, education and outreach activities and the distribution of scarce conservation resources in SE Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.