Previously we showed that CO2 could be used to extract organic molecules from ionic liquids without contamination of the ionic liquid. Consequently a number of other groups demonstrated that ionic liquid/CO2 biphasic systems could be used for homogeneously catalyzed reactions. Large differences in the solubility of various gases in ionic liquids present the possibility of using them for gas separations. More recently we and others have shown that the presence of CO2 increases the solubility of other gases that are poorly soluble in the ionic liquid phase. Therefore, a knowledge and understanding of the phase behavior of these ionic liquid/CO2 systems is important. With the aim of finding ionic liquids that improve CO2 solubility and gaining more information to help us understand how to design CO2-philic ionic liquids, we present the low- and high-pressure measurements of CO2 solubility in a range of ionic liquids possessing structures likely to increase the solubility of CO2. We examined the CO2 solubility in a number of ionic liquids with systematic increases in fluorination. We also studied nonfluorinated ionic liquids that have structural features known to improve CO2 solubility in other compounds such as polymers, for example, carbonyl groups and long alkyl chains with branching or ether linkages. Results show that ionic liquids containing increased fluoroalkyl chains on either the cation or anion do improve CO2 solubility when compared to less fluorinated ionic liquids previously studied. It was also found that it was possible to obtain similar, high levels of CO2 solubility in nonfluorous ionic liquids. In agreement with our previous results, we found that the anion frequently plays a key role in determining CO2 solubility in ionic liquids.
Different measures of polarity and nucleophilicity of a range of ionic liquids have been investigated using two solvatochromic dyes; the polarity appears to be largely cation controlled, while the donor strength is entirely anion dependent.
Selective oxidation reactions are challenging when carried out on an industrial scale. Many traditional methods are undesirable from an environmental or safety point of view. There is a need to develop sustainable catalytic approaches that use molecular oxygen as the terminal oxidant. This review will discuss the use of stable radicals (primarily nitroxyl radicals) in aerobic oxidation catalysis. We will discuss the important advances that have occurred in recent years, highlighting the catalytic performance, mechanistic insights and the expanding synthetic utility of these catalytic systems.
Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.