Four HLA-DR-restricted HIV-derived Th lymphocyte (HTL) epitopes cross-reactive with the murine I-Ab class II molecule were used to evaluate different vaccine design strategies to simultaneously induce multiple HTL responses. All four epitopes were immunogenic in H-2b mice, demonstrating the feasibility of murine models to evaluate epitope-based vaccines destined for human use. Immunization with a pool of peptides induced responses against all four epitopes; illustrating immunodominance does not prevent the induction of balanced multispecific responses. When different delivery systems were evaluated, a multiple Ag peptide construct was found to be less efficient than a linear polypeptide encompassing all four epitopes. Further characterization of linear polypeptide revealed that the sequential arrangement of the epitopes created a junctional epitope with high affinity class II binding. Disruption of this junctional epitope through the introduction of a GPGPG spacer restored the immunogenicity against all four epitopes. Finally, we demonstrate that a GPGPG spacer construct can be used to induce HTL responses by either polypeptide or DNA immunization, highlighting the flexibility of the approach.
Epitope-based vaccines designed to induce CTL responses specific for HIV-1 are being developed as a means for addressing vaccine potency and viral heterogeneity. We identified a set of 21 HLA-A2, HLA-A3, and HLA-B7 restricted supertype epitopes from conserved regions of HIV-1 to develop such a vaccine. Based on peptide-binding studies and phenotypic frequencies of HLA-A2, HLA-A3, and HLA-B7 allelic variants, these epitopes are predicted to be immunogenic in greater than 85% of individuals. Immunological recognition of all but one of the vaccine candidate epitopes was demonstrated by IFN-γ ELISPOT assays in PBMC from HIV-1-infected subjects. The HLA supertypes of the subjects was a very strong predictor of epitope-specific responses, but some subjects responded to epitopes outside of the predicted HLA type. A DNA plasmid vaccine, EP HIV-1090, was designed to express the 21 CTL epitopes as a single Ag and tested for immunogenicity using HLA transgenic mice. Immunization of HLA transgenic mice with this vaccine was sufficient to induce CTL responses to multiple HIV-1 epitopes, comparable in magnitude to those induced by immunization with peptides. The CTL induced by the vaccine recognized target cells pulsed with peptide or cells transfected with HIV-1 env or gag genes. There was no indication of immunodominance, as the vaccine induced CTL responses specific for multiple epitopes in individual mice. These data indicate that the EP HIV-1090 DNA vaccine may be suitable for inducing relevant HIV-1-specific CTL responses in humans.
Chronic hepatitis B virus (HBV) infection, which occurs in 1 to 5% of adult infections and up to 30% of pediatric infections, is characterized by high levels of viral replication averaging a daily production of about 10 11 viral particles, hepatic inflammation, necrosis, and ultimately liver failure (36). An estimated 350 million individuals are classified as chronically HBV infected, with the highest concentrations of infection occurring in large parts of Asia and Africa (23).Chronic HBV can be treated with nucleoside analogues that inhibit polymerase activity. Lamivudine was the first licensed polymerase inhibitor, and it results in significant suppression of HBV DNA levels. However, this response, similar to the loss of hepatitis B virus e antigen, is often not sustained upon discontinuation of treatment (11,28). The emergence of viral resistance in 15 to 20% of treated patients per year clearly pinpoints the limitations of this treatment.Newer drugs such as adefovir dipivoxil, entecavir, and telbivudine can result in less resistance, increased suppression of DNA levels, or in somewhat higher levels of hepatitis B virus e antigen loss. Real long-term treatment data with these drugs are, however, limited, and it is unclear how well these responses would be sustained if therapy were withdrawn.
BackgroundInfluenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis.Methodology/Principal FindingsThe Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus.Conclusions/SignificanceSeveral non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.