Metamaterials are artificial optical media composed of sub-wavelength metallic and dielectric building blocks that feature optical phenomena not present in naturally occurring materials. Although they can serve as the basis for unique optical devices that mould the flow of light in unconventional ways, three-dimensional metamaterials suffer from extreme propagation losses. Two-dimensional metamaterials (metasurfaces) such as hyperbolic metasurfaces for propagating surface plasmon polaritons have the potential to alleviate this problem. Because the surface plasmon polaritons are guided at a metal-dielectric interface (rather than passing through metallic components), these hyperbolic metasurfaces have been predicted to suffer much lower propagation loss while still exhibiting optical phenomena akin to those in three-dimensional metamaterials. Moreover, because of their planar nature, these devices enable the construction of integrated metamaterial circuits as well as easy coupling with other optoelectronic elements. Here we report the experimental realization of a visible-frequency hyperbolic metasurface using single-crystal silver nanostructures defined by lithographic and etching techniques. The resulting devices display the characteristic properties of metamaterials, such as negative refraction and diffraction-free propagation, with device performance greatly exceeding those of previous demonstrations. Moreover, hyperbolic metasurfaces exhibit strong, dispersion-dependent spin-orbit coupling, enabling polarization- and wavelength-dependent routeing of surface plasmon polaritons and two-dimensional chiral optical components. These results open the door to realizing integrated optical meta-circuits, with wide-ranging applications in areas from imaging and sensing to quantum optics and quantum information science.
Ferroelectricity in finite-dimensional systems continues to arouse interest, motivated by predictions of vortex polarization states and the utility of ferroelectric nanomaterials in memory devices, actuators and other applications. Critical to these areas of research are the nanoscale polarization structure and scaling limit of ferroelectric order, which are determined here in individual nanocrystals comprising a single ferroelectric domain. Maps of ferroelectric structural distortions obtained from aberration-corrected transmission electron microscopy, combined with holographic polarization imaging, indicate the persistence of a linearly ordered and monodomain polarization state at nanometre dimensions. Room-temperature polarization switching is demonstrated down to ~5 nm dimensions. Ferroelectric coherence is facilitated in part by control of particle morphology, which along with electrostatic boundary conditions is found to determine the spatial extent of cooperative ferroelectric distortions. This work points the way to multi-Tbit/in(2) memories and provides a glimpse of the structural and electrical manifestations of ferroelectricity down to its ultimate limits.
Nanocrystals of the wide band gap semiconductor zinc oxide of controllable morphologies were synthesized by a simple thermal decomposition method. The predominating factor in determining the morphology (spheres, triangular prisms, and rods) was the solvent, selected on the basis of coordinating power. The nanoparticles were structurally analyzed, and the photoluminescence of each shape was compared. The intensity of the green band emission, common to many ZnO structures, was found to vary with morphology. The strongest green band intensity corresponded to the shape with the largest surface/volume ratio and could be attributed to surface oxygen vacancies. Control over the morphology of ZnO at the nanoscale is presented as a means to control the green band emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.