Nanometer sized gold patterns were produced with controlled spacings using the combination of a top-down (e-beam lithography) and a bottom-up (macromolecular chemistry) technique. Sub-10 nm nanoparticle arrays on silicon consisting of gold nano particles separated by micro meter spacings were fabricated with this approach. Using electron beam lithography, templates comprising of 150 nm to 1 μm sized trenches, holes and aperiodic patterns were made in an electron-beam resist. Block copolymer micelles were then patterned into this template by spincoating. The micelles acted as positioners for a nanometer sized gold precursor that is sequestered within its core. Subsequent removal of the resist layer left an array of Au loaded organic micelles ordered according to the pattern of the template. Exposure of this substrate to a hydrogen plasma removed the organic block copolymer and resulted in an array of sub-10 nm gold nanoparticles/nanoclusters with micron separations. The gold was then used as an anchor point for the tethering of functional molecules in order to localize fluorescent molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.