Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C529Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y529 variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y529 that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.
SIRT6 is a member of the evolutionarily conserved sirtuin family of NAD ؉ -dependent protein deacetylases and functions in genomic stability and transcriptional control of glucose metabolism. Early reports suggested that SIRT6 performs ADPribosylation, whereas more recent studies have suggested that SIRT6 functions mainly as a histone deacetylase. Thus, the molecular functions of SIRT6 remain uncertain. Here, we perform biochemical, kinetic, and structural studies to provide new mechanistic insight into the functions of SIRT6. Utilizing three different assays, we provide biochemical and kinetic evidence that SIRT6-dependent histone deacetylation produces Oacetyl-ADP-ribose but at a rate ϳ1,000 times slower than other highly active sirtuins. To understand the molecular basis for such low deacetylase activity, we solved the first crystal structures of this class IV sirtuin in complex with ADP-ribose and the non-hydrolyzable analog of O-acetyl-ADP-ribose, 2 -N-acetyl-ADP-ribose. The structures revealed unique features of human SIRT6, including a splayed zinc-binding domain and the absence of a helix bundle that in other sirtuin structures connects the zinc-binding motif and Rossmann fold domain. SIRT6 also lacks the conserved, highly flexible, NAD ؉ -binding loop and instead contains a stable single helix. These differences led us to hypothesize that SIRT6, unlike all other studied sirtuins, would be able to bind NAD ؉ in the absence of an acetylated substrate. Indeed, we found that SIRT6 binds NAD ؉ with relatively high affinity (K d ؍ 27 ؎ 1 M) in the absence of an acetylated substrate. Isothermal titration calorimetry and tryptophan fluorescence binding assays suggested that ADP-ribose and NAD ؉ induce different structural perturbations and that NADH does not bind to SIRT6. Collectively, these new insights imply a unique activating mechanism and/or the possibility that SIRT6 could act as an NAD ؉ metabolite sensor.Sirtuins comprise an ancient and diverse family of nicotinamide adenine dinucleotide (NAD ϩ )-dependent protein deacetylases that are evolutionarily conserved from bacteria to eukaryotes (1). Unlike other classes of histone deacetylases, which utilize an active site Zn 2ϩ and involve direct attack of a water molecule on acetylated lysines, sirtuins transfer the acetyl group from the lysine side chain of a protein or peptide substrate to the co-factor NAD ϩ , generating nicotinamide, 2Ј-Oacetyl-ADP-ribose (OAADPr) 3 (2, 3), and a deacetylated substrate. This unique requirement of NAD ϩ suggests that sirtuins might act as sensors of the cellular metabolic state (4), relaying changes in cellular metabolism to reverse acetylation-mediated pathways, which include transcription, cell cycle progression, genome maintenance, apoptosis, and organism longevity. The founding member of the sirtuin family, yeast Sir2 (silent information regulator 2), has emerged as an important regulator in extending the life span of Saccharomyces cerevisiae (5). In other organisms, such as Caenorhabditis elegans and Drosophila me...
Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation.
Background Children with allergic asthma have more frequent and severe human rhinovirus (HRV)-induced wheezing and asthma exacerbations through unclear mechanisms. Objective To determine whether increased high-affinity IgE receptor (FcεRI) expression and cross-linking impairs innate immune responses to HRV, particularly in allergic asthmatic children. Methods Peripheral blood mononuclear cells (PBMC) were obtained from 44 children and surface expression of FcεRI on plasmacytoid dendritic cells (pDCs), myeloid dendritic cells (mDCs), monocytes, and basophils was assessed using flow cytometry. Cells were also incubated with rabbit anti-human IgE to cross-link FcεRI, followed by stimulation with HRV-16, and interferon (IFN)-α and -λ1 were measured by Luminex. The relationships among FcεRI expression and cross-linking, HRV-induced IFN-α and -λ1 production, and childhood allergy and asthma were subsequently analyzed. Results FcεRIα expression on pDCs was inversely associated with HRV-induced IFN- α and IFN-λ1 production. Cross-linking FcεRI prior to HRV stimulation further reduced PBMC IFN-α (47% relative reduction, 95% confidence interval [CI], 32–62%, p<0.0001) and IFN-λ1 (81% relative reduction, 95% CI, 69–93%, p<0.0001) secretion. Allergic asthmatic children had higher surface expression of FcεRIα on pDCs and mDCs when compared to non-allergic non-asthmatic children. Further, after FcεRI cross-linking, allergic asthmatic children had significantly lower HRV-induced IFN responses than allergic non-asthmatics (IFN-α, p=0.004; IFN-λ1, p=0.02) and non-allergic non-asthmatics (IFN-α, p=0.002; IFN-λ1, p=0.01). Conclusions Allergic asthmatic children have impaired innate immune responses to HRV that correlate with increased FcεRI expression on pDCs and are reduced by FcεRI cross-linking. These effects likely increase susceptibility to HRV-induced wheezing and asthma exacerbations.
In the above article, the author's name, Mark K. Devries, was spelled incorrectly. We regret any inconvenience this may have caused.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.