Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease pathogenesis.
Mutations in PTEN-induced kinase 1 (pink1) or parkin cause autosomal-recessive and some sporadic forms of Parkinson's disease. pink1 acts upstream of parkin in a common genetic pathway to regulate mitochondrial integrity in Drosophila. Mitochondrial morphology is maintained by a dynamic balance between the opposing actions of mitochondrial fusion, controlled by Mitofusin (mfn) and Optic atrophy 1 (opa1), and mitochondrial fission, controlled by drp1. Here, we explore interactions between pink1/parkin and the mitochondrial fusion/fission machinery. Muscle-specific knockdown of the fly homologue of Mfn (Marf ) or opa1, or overexpression of drp1, results in significant mitochondrial fragmentation. Mfn-knockdown flies also display altered cristae morphology. Interestingly, knockdown of Mfn or opa1 or overexpression of drp1, rescues the phenotypes of muscle degeneration, cell death, and mitochondrial abnormalities in pink1 or parkin mutants. In the male germline, we also observe genetic interactions between pink1 and the testes-specific mfn homologue fuzzy onion, and between pink1 and drp1. Our data suggest that the pink1/parkin pathway promotes mitochondrial fission and/or inhibits fusion by negatively regulating mfn and opa1 function, and/or positively regulating drp1. However, pink1 and parkin mutant flies show distinct mitochondrial phenotypes from drp1 mutant flies, and flies carrying a heterozygous mutation in drp1 enhance the pink1-null phenotype, resulting in lethality. These results suggest that pink1 and parkin are likely not core components of the drp1-mediated mitochondrial fission machinery. Modification of fusion and fission may represent a novel therapeutic strategy for Parkinson's disease.arkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by degeneration of dopaminergic neurons in the midbrain (1). Although the exact cause of PD is unclear, mitochondrial toxins such as 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) can selectively destroy dopaminergic neurons and cause clinical features similar to PD (2, 3). Moreover, mitochondrial respiratory dysfunction also occurs in sporadic PD (4). The most compelling evidence for a mitochondrial etiology of PD, however, derives from the study of genes mediating familial forms of the disease (4, 5). Mutations in PTEN-induced kinase 1 (Pink1; PARK6), which encodes a serine-threonine kinase localized to mitochondria, and parkin (PARK2), which encodes a RING finger-containing E3 ubiquitin ligase, have been found in recessively inherited and sporadic PD cases (6-9). Previously, we and others have reported that Drosophila pink1 and parkin function in the same genetic pathway, with pink1 acting upstream of parkin, to regulate mitochondrial integrity in testes, muscle, and dopaminergic neurons (10-12). Flies lacking pink1 or parkin function are viable and show muscle degeneration and TUNEL staining, indicative of cell death (10-13). Subsequent studies have shown that parkin can suppress mitochondrial defects caused by pink1...
Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising compounds increase Abeta42 levels in the brains of mice. The elevations in Abeta42 by these compounds are comparable to the increases in Abeta42 induced by Alzheimer disease-causing mutations in the genes encoding amyloid beta protein precursor and presenilins, raising the possibility that exogenous compounds or naturally occurring isoprenoids might increase Abeta42 production in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.