Antimicrobial resistance in Yersinia pestis is rare, yet constitutes a significant international public health and biodefense threat. In 1995, the first multidrug resistant (MDR) isolate of Y. pestis (strain IP275) was identified, and was shown to contain a self-transmissible plasmid (pIP1202) that conferred resistance to many of the antimicrobials recommended for plague treatment and prophylaxis. Comparative analysis of the DNA sequence of Y. pestis plasmid pIP1202 revealed a near identical IncA/C plasmid backbone that is shared by MDR plasmids isolated from Salmonella enterica serotype Newport SL254 and the fish pathogen Yersinia ruckeri YR71. The high degree of sequence identity and gene synteny between the plasmid backbones suggests recent acquisition of these plasmids from a common ancestor. In addition, the Y. pestis pIP1202-like plasmid backbone was detected in numerous MDR enterobacterial pathogens isolated from retail meat samples collected between 2002 and 2005 in the United States. Plasmid-positive strains were isolated from beef, chicken, turkey and pork, and were found in samples from the following states: California, Colorado, Connecticut, Georgia, Maryland, Minnesota, New Mexico, New York and Oregon. Our studies reveal that this common plasmid backbone is broadly disseminated among MDR zoonotic pathogens associated with agriculture. This reservoir of mobile resistance determinants has the potential to disseminate to Y. pestis and other human and zoonotic bacterial pathogens and therefore represents a significant public health concern.
The rapid emergence of Escherichia coli O157:H7 from an unknown strain in 1982 to the dominant hemorrhagic E. coli serotype in the United States and the cause of widespread outbreaks of human food-borne illness highlights a need to evaluate critically the extent to which genomic plasticity of this important enteric pathogen contributes to its pathogenic potential and its evolution as well as its adaptation in different ecological niches. Aimed at a better understanding of the evolution of the E. coli O157:H7 pathogenome, the present study presents the high-quality sequencing and comparative phylogenomic analysis of a comprehensive panel of 25 E. coli O157:H7 strains associated with three nearly simultaneous food-borne outbreaks of human disease in the United States. Here we present a population genetic analysis of more than 200 related strains recovered from patients, contaminated produce, and zoonotic sources. High-resolution phylogenomic approaches allow the dynamics of pathogenome evolution to be followed at a high level of phylogenetic accuracy and resolution. SNP discovery and study of genome architecture and prophage content identified numerous biomarkers to assess the extent of genetic diversity within a set of clinical and environmental strains. A total of 1,225 SNPs were identified in the present study and are now available for typing of the E. coli O157:H7 lineage. These data should prove useful for the development of a refined phylogenomic framework for forensic, diagnostic, and epidemiological studies to define better risk in response to novel and emerging E. coli O157:H7 resistance and virulence phenotypes.
Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.
Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [bla CMY-2 and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human-and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.