The recently discovered p53-related genes, p73 and p63, express multiple splice variants and N-terminally truncated forms initiated from an alternative promoter in intron 3. To date, no alternative promoter and multiple splice variants have been described for the p53 gene. In this study, we show that p53 has a gene structure similar to the p73 and p63 genes. The human p53 gene contains an alternative promoter and transcribes multiple splice variants. We show that p53 variants are expressed in normal human tissue in a tissue-dependent manner. We determine that the alternative promoter is conserved through evolution from Drosophila to man, suggesting that the p53 family gene structure plays an essential role in the multiple activities of the p53 family members. Consistent with this hypothesis, p53 variants are differentially expressed in human breast tumors compared with normal breast tissue. We establish that p53 can bind differentially to promoters and can enhance p53 target gene expression in a promoter-dependent manner, while ⌬133p53 is dominant-negative toward full-length p53, inhibiting p53-mediated apoptosis. The differential expression of the p53 isoforms in human tumors may explain the difficulties in linking p53 status to the biological properties and drug sensitivity of human cancer.[Keywords: Splice; promoter; Drosophila; cancer; p73; p63] Supplemental material is available at http://www.genesdev.org.
The only reported role for the conjugation of the NEDD8 ubiquitin-like molecule is control of the activity of SCF ubiquitin ligase complexes. Here, we show that the Mdm2 RING finger E3 ubiquitin ligase can also promote NEDD8 modification of the p53 tumor suppressor protein. Mdm2 is itself modified with NEDD8 with very similar characteristics to the autoubiquitination activity of Mdm2. By using a cell line (TS-41) with a temperature-sensitive mutation in the NEDD8 conjugation pathway and a p53 mutant that cannot be NEDDylated (3NKR), we demonstrate that Mdm2-dependent NEDD8 modification of p53 inhibits its transcriptional activity. These findings expand the role for Mdm2 as an E3 ligase, providing evidence that Mdm2 is a common component of the ubiquitin and NEDD8 conjugation pathway and indicating the diverse mechanisms by which E3 ligases can control the function of substrate proteins.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.