The genus Salispina was recently described for saprotrophic estuarine oomycetes with aculeolate or spiny sporangia. The genus currently contains three species, S. intermedia, S. lobata, and S. spinosa, the latter two previously included in Halophytophthora. During a survey of mangrove-inhabiting oomycetes in the Philippines, an isolate of Salispina (USTCMS 1611), was obtained from a decaying mangrove leaf. This isolate differed from other species in the genus in a unique combination of morphological and biological characters. Phylogenetic analysis revealed it to be the sister lineage of S. lobata. Consequently, the new species name S. hoi is introduced for the isolate. In addition, Salispina spp. grouped with Sapromyces of Rhipidiales with strong support, but differs from all other known genera of the order in the weak formation of hyphal constrictions, and absence of basal thalli and a holdfast network. The new family Salispinaceae is, therefore, described to accommodate Salispina in the order Rhipidiales.
Introduction Marine oomycetes are a group of fungal-like eukaryotes of the kingdom Straminipila 1. Members of this group are considered as initial colonizers of fallen senescent mangrove leaves 1 and are seen as a potentially good source of fatty acids e.g. polyunsaturated and monounsaturated that are of industrial and medical importance 2 4. Polyunsaturated fatty acids PUFAs are biological lipid derivatives which are essential in human metabolism and other biological activities 5. One application of PUFAs in the medical field is its cytotoxic and apoptotic activity against cancer
Studies on marine‐sourced fatty acids have gathered significant interest recently as an important component of aquaculture feeds and of biofuel production. Of the organisms capable of producing fatty acids, marine oomycetes are promising model organisms. One group of marine oomycetes are the Halophytophthora spp. which is known to have an important role in leaf decomposition, thereby changing the plant debris into exudates which are usable to consumers in the mangrove ecosystems. This study reports the three mangrove oomycetes isolated from Philippine mangrove forests, identified herein as Halophytophthora vesicula AK1YB2 (Aklan), H. vesicula PQ1YB3 (Quezon) and Salispina spinosa ST1YB3 (Davao del Norte). These isolates were subjected to growth analyses using varying incubation parameters (salinity level and pH), and for fatty acid production. Results revealed the presence of different fatty acids such as Arachidonic acid, Linoleic acid and Vaccenic acid when grown on V8S and PYGS media. This study is the first observation of fatty acids from S. spinosa and H. vesicula from the Philippines. Significance and Impact of the Study Tropical Philippines straddling west of the Pacific Ocean and East of South China Sea is rich in marine and estuarine oomycetes. These micro‐organisms, hitherto poorly known and unstudied in the country, play an important role in the nutritive cycle of the mangrove ecosystem. Due to the increasing demand for an alternative source of fatty acids, species of Oomycetes isolated from select mangrove forests in Luzon, Visayas and Mindanao were analysed for their fatty acid contents. Prospects for industrially‐important fatty acids make these Oomycetes all‐important to study in applied microbiology in the Philippine setting where these structurally simple micro‐organisms abound.
ResearchBackground. Discharge of textile dyes into the environment poses a significant threat. They are poorly biodegradable and toxic due to their complex composition and aromatic structures. In the search for alternatives to physical and chemical treatments, biodegradation of synthetic dyes by various microbes is emerging as an effective and promising approach. Objectives. The decolorization of synthetic dyes by yeast co-cultures and consortia from leaves and fruit peels was assessed at a 50 µg/mL dye concentration. Methods. Yeasts isolates from leaves and fruit peels were screened for potential decolorization of synthetic dyes at 25-50 µg/mL. Decolorization parameters were optimized for synergistic properties and development of yeast co-cultures and consortium. Possible decolorization reactions were initially assessed by cell immobilization, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Fourier transform infrared spectroscopy (FTIR) analysis. Results. A total of 16 organisms were isolated from rose, mango, and pineapple leaves and pineapple fruit peels. Only 4 organisms showed high decolorization of four synthetic dyes: Direct Pink B, Disperse Yellow 5G, Direct Fast Orange S, and Reactive Turquoise Blue G. The optimum condition for best decolorizers of selected dyes at 50 µg/mL were Candida guilliermondii (Y011) for Direct Pink B at pH 9, 37 o C; C. dubliniensis (Y014) for Disperse Yellow 5G at pH 4, 25 o C; C. guilliermondii (Y004) for Direct Fast Orange S at pH 7, 25 o C, and C. famata (Y003) for Reactive Turquoise Blue G at pH 4, 35 o C. None of the 4 yeast isolates showed any antagonistic activity when subjected to the lawn-spotting method for the formation of co-cultures and consortium. The best co-cultures obtained 61% decolorization of Direct Pink B, 65% decolorization of Disperse Yellow 5G, 41% decolorization of Direct Fast Orange S, and 50-51% decolorization of Reactive Turquoise Blue G. Immobilized yeast cells were active in decolorizing the dyes and SDS-PAGE analysis confirmed the presence of an extracellular protein. The results of FTIR also showed changes in the functional group of Direct Pink B, but minimal changes in the functional groups of Reactive Turquoise Blue G, indicating a different decolorization pathway. Conclusions. Yeasts in co-cultures and consortia can decolorize toxic synthetic dyes through different decolorization pathways such as enzyme degradation and bioaccumulation. This technique may have a use in the treatment of wastewater systems. Competing Interests. The authors declare no competing financial interests.
Background: Breast cancer is a multifactorial disease that affects women worldwide. Its progression is likely to be executed by oxidative stress wherein elevated levels of reactive oxygen and nitrogen species drive several breast cancer pathologies. Spider venom contains various pharmacological peptides which exhibit selective activity to abnormal expression of ion channels on cancer cell surface which can confer potent anti-cancer activities against this disease. Methods: Venom was extracted from a Philippine tarantula by electrostimulation and fractionated by reverse phase-high performance liquid chromatography (RP-HPLC). Venom fractions were collected and used for in vitro analyses such as cellular toxicity, morphological assessment, and oxidative stress levels. Results: The fractionation of crude spider venom generated several peaks which were predominantly detected spectrophotometrically and colorimetrically as peptides. Treatment of MCF-7 cell line of selected spider venom peptides induced production of several endogenous radicals such as hydroxyl radicals (•OH), nitric oxide radicals (•NO), superoxide anion radicals (•O 2−) and lipid peroxides via malondialdehyde (MDA) reaction, which is comparable with the scavenging effects afforded by 400 µg/mL vitamin E and L-cysteine (p<0.05). Concomitantly, the free radicals produced decrease the mitochondrial membrane potential and metabolic activity as detected by rhodamine 123 and tetrazolium dye respectively (p>0.05). This is manifested by cytotoxicity in MCF-7 cells as seen by increase in membrane blebbing, cellular detachment, caspase activity and nuclear fragmentation. Conclusion: These data suggest that the Philippine tarantula venom contains peptide constituents exhibiting pro-oxidative and nitrosative-dependent cytotoxic activities against MCF-7 cells and can indicate mechanistic insights to further explore its potential application as prooxidants in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.