Objective
Coronavirus disease 2019 (COVID-19) is a pandemic respiratory illness spreading from person-to-person caused by a novel coronavirus and poses a serious public health risk. The goal of this study was to apply a modified susceptible-exposed-infectious-recovered (SEIR) compartmental mathematical model for prediction of COVID-19 epidemic dynamics incorporating pathogen in the environment and interventions. The next generation matrix approach was used to determine the basic reproduction number
. The model equations are solved numerically using fourth and fifth order Runge–Kutta methods.
Results
We found an
of 2.03, implying that the pandemic will persist in the human population in the absence of strong control measures. Results after simulating various scenarios indicate that disregarding social distancing and hygiene measures can have devastating effects on the human population. The model shows that quarantine of contacts and isolation of cases can help halt the spread on novel coronavirus.
Objective: Coronavirus disease 2019 (COVID-19) is a pandemic respiratory illness spreading from person-to-person caused by a novel coronavirus and poses a serious public health risk. The goal of this study was to apply a modified susceptible-exposed-infectious-recovered (SEIR) compartmental mathematical model for prediction of COVID-19 epidemic dynamics incorporating pathogen in the environment and interventions. The next generation matrix approach was used to determine the basic reproduction number (O). The model equations are solved numerically using fourth and fifth order Runge Kutta methods.Results: We found an b of j, implying that the pandemic will persist in the human population absent strong control measures. Results after simulating various scenarios indicate that disregarding social distancing and hygiene measures can have devastating effects on the human population. The model shows that quarantine of contacts and isolation of cases can help halt the spread of novel coronavirus.
Casson fluid model is the most accurate mathematical expression for investigating the dynamics of fluids with non-zero plastic dynamic viscosity like that of blood. Despite huge number of published articles on the transport phenomenon, there is no report on the increasing effects of the Coriolis force. This report presents the significance of increasing not only the Coriolis force and reducing plastic dynamic viscosity, but also the Prandtl number and buoyancy forces on the motion of non-Newtonian Casson fluid over the rotating non-uniform surface. The relevant body forces are derived and incorporated into the Navier-Stokes equations to obtain appropriate equations for the flow of Newtonian Casson fluid under the action of Coriolis force. The governing equations are non-dimensionalized using Blasius similarity variables to reduce the nonlinear partial differential equations to nonlinear ordinary differential equations. The resulting system of nonlinear ordinary differential equations is solved using the Runge-Kutta-Gills method with the Shooting technique, and the results depicted graphically. An increase in Coriolis force and non-Newtonian parameter decreases the velocity profile in the x-direction, causes a dual effect on the shear stress, increases the temperature profiles, and increases the velocity profile in the z-direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.