Access to therapeutic oxygen remains a challenge in the effort to reduce pneumonia mortality among children in low- and middle-income countries. The use of oxygen concentrators is common, but their effectiveness in delivering uninterrupted oxygen is gated by reliability of the power grid. Often cylinders are employed to provide continuous coverage, but these can present other logistical challenges. In this study, we examined the use of a novel, low-pressure oxygen storage system to capture excess oxygen from a concentrator to be delivered to patients during an outage. A prototype was built and tested in a non-clinical trial in Jinja, Uganda. The trial was carried out at Jinja Regional Referral Hospital over a 75-day period. The flow rate of the unit was adjusted once per week between 0.5 and 5 liters per minute. Over the trial period, 1284 power failure episodes with a mean duration of 3.1 minutes (range 0.08 to 1720 minutes) were recorded. The low-pressure system was able to deliver oxygen over 56% of the 4,295 power outage minutes and cover over 99% of power outage events over the course of the study. These results demonstrate the technical feasibility of a method to extend oxygen availability and provide a basis for clinical trials.
Artificial insemination (AI) is widely used in livestock industries to breed for desirable characteristics and increase yields. The standard practice of storing and transporting bovine semen uses liquid nitrogen (LN), a scarce commodity in many regions of the world. This study explored the feasibility of using dry ice, a more readily available alternative. We developed equipment that dispenses dry ice from widely available liquid carbon dioxide (LCO2) tanks into an easily transportable device. In vivo fertility results with a dry ice cold chain showed no statistical difference to the conventional LN method. In vitro bovine semen analyses also showed that storage under these conditions minimally affects characteristics associated with fertility. A dry ice cold chain system could leverage the global availability of LCO2 to expand the reach of AI and other cold storage applications of biological materials in low-resource settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.