Platelet-dependent arterial thrombosis triggers most heart attacks and strokes. Because the coagulation protease thrombin is the most potent activator of platelets, identification of the platelet receptors for thrombin is critical for understanding thrombosis and haemostasis. Protease-activated receptor-1 (PAR1) is important for activation of human platelets by thrombin, but plays no apparent role in mouse platelet activation. PAR3 is a thrombin receptor that is expressed in mouse megakaryocytes. Here we report that thrombin responses in platelets from PAR3-deficient mice were markedly delayed and diminished but not absent. We have also identified PAR4, a new thrombin-activated receptor. PAR4 messenger RNA was detected in mouse megakaryocytes and a PAR4-activating peptide caused secretion and aggregation of PAR3-deficient mouse platelets. Thus PAR3 is necessary for normal thrombin responses in mouse platelets, but a second PAR4-mediated mechanism for thrombin signalling exists. Studies with PAR-activating peptides suggest that PAR4 also functions in human platelets, which implies that an analogous dual-receptor system also operates in humans. The identification of a two-receptor system for platelet activation by thrombin has important implications for the development of antithrombotic therapies.
Thrombin is a coagulation protease that activates platelets, leukocytes, endothelial and mesenchymal cells at sites of vascular injury, acting partly through an unusual proteolytically activated G-protein-coupled receptor. Knockout of the gene encoding this receptor provided definitive evidence for a second thrombin receptor in mouse platelets and for tissue-specific roles for different thrombin receptors. We now report the cloning and characterization of a new human thrombin receptor, designated protease-activated receptor 3 (PAR3). PAR3 can mediate thrombin-triggered phosphoinositide hydrolysis and is expressed in a variety of tissues, including human bone marrow and mouse megakaryocytes, making it a candidate for the sought-after second platelet thrombin receptor. PAR3 provides a new tool for understanding thrombin signalling and a possible target for therapeutics designed selectively to block thrombotic, inflammatory and proliferative responses to thrombin.
Thrombin, a coagulation protease generated at sites of vascular injury, activates platelets, endothelial cells, leukocytes and mesenchymal cells. A G-protein-coupled receptor that is proteolytically activated by thrombin is a target for drug development aimed at blocking thrombosis, inflammation and proliferation. Here we show that although disruption of the thrombin receptor (tr) gene in mice causes about half of the tr-/- embryos to die at embryonic day 9-10, half survive to become grossly normal adult mice with no bleeding diathesis. Strikingly, tr-/- platelets respond strongly to thrombin, whereas tr-/- fibroblasts lose their ability to respond to thrombin. We conclude that the thrombin receptor plays an unexpected role in embryonic development, suggesting a possible new function for the 'coagulation' proteases themselves. Moreover, a second platelet thrombin receptor exists, and different thrombin receptors have tissue-specific roles. This may allow development of therapeutics that will selectively block thrombin's different cellular actions.
We used PCR to amplify proteinase activated receptor-2 (PAR-2) from human kidney cDNA. The open reading frame comprised 1191 bp and encoded a protein of 397 residues with 83% identity with mouse PAR-2. In KNRK cells (a line of kirsten murine sarcoma virus-transformed rat kidney epithelial cells) transfected with this cDNA, trypsin and activating peptide (AP) corresponding to the tethered ligand exposed by trypsin cleavage (SLIGKV-NH2) induced a prompt increase in cytosolic calcium ion concentration ([Ca2+]i). Human PAR-2 (hPAR-2) resided both on the plasma membrane and in the Golgi apparatus. hPAR-2 mRNA was highly expressed in human pancreas, kidney, colon, liver and small intestine, and by A549 lung and SW480 colon adenocarcinoma cells. Hybridization in situ revealed high expression in intestinal epithelial cells throughout the gut. Trypsin and AP stimulated an increase in [Ca2+]i in a rat intestinal epithelial cell line (hBRIE 380) and stimulated amylase secretion in isolated pancreatic acini. In A549 cells, which also responded to trypsin and AP with mobilization of cytosolic Ca2+, AP inhibited colony formation. Thus PAR-2 may serve as a trypsin sensor in the gut. Its expression by cells and tissues not normally exposed to pancreatic trypsin suggests that other proteases could serve as physiological activators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.