An experimental procedure originally proposed by G. I. Taylor to determine the dynamic yield point of metals is studied, using high-speed computer simulations. A simple method is outlined for determining the yield strength of materials that can be described by elastic-plastic theory. Results for several metals are presented.
A cumulative-strain-damage criterion is used to predict the initiation and propagation of fracture in ductile materials. The model is consistent with a model of ductile rupture that involves void growth and coalescence. Two-and three-dimensional finite difference computer codes, which use incremental-plasticity theory to describe large strains with rotation, are used to trace the history of damage in a material due to external forces. Fracture begins when the damage exceeds a critical value over a critical distance and proceeds as the critical-damage state is reached elsewhere. This unified approach to failure prediction can be applied to an arbitrary geometry if the material behavior has been adequately characterized. The damage function must be calibrated for a particular material using various material property tests. The fracture toughness of 6061-T651 aluminum is predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.