An active tuned mass damper (ATMD) is employed for damping of tower vibrations of fixed offshore wind turbines, where the additional actuator force is controlled using feedback from the tower displacement and the relative velocity of the damper mass. An optimum tuning procedure equivalent to the tuning procedure of the passive tuned mass damper combined with a simple procedure for minimizing the control force is employed for determination of optimum damper parameters and feedback gain values. By time domain simulations conducted in an aeroelastic code, it is demonstrated that the ATMD can be used to further reduce the structural response of the wind turbine compared with the passive tuned mass damper and this without an increase in damper mass. A limiting factor of the design of the ATMD is the displacement of the damper mass, which for the ATMD, increases to compensate for the reduction in mass. Copyright © 2016 John Wiley & Sons, Ltd.
Abstract. In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion is controlled by a filtered integral force feedback strategy, where the main feature is the filter, which is designed to render a damper force that in a phase-plane representation operates in front of the corresponding damper velocity. It is demonstrated that in the specific parameter regime where the damper force leads velocity the control is stable and yields a significant improvement in damping performance compared to the pure viscous damper.
Abstract. The magnitude of tower vibrations of offshore wind turbines is a key design driver for the feasibility of the monopile support structure. A novel control concept for the damping of these tower vibrations is proposed, where viscous type hybrid dampers are installed at the bottom of the wind turbine tower. The proposed hybrid damper consists of a passive viscous dash-pot placed in series with a load cell and an active actuator. By integrated force feedback control of the actuator motion the associated displacement amplitude over the viscous damper can be increased compared to the passive viscous case, hereby significantly increasing the feasibility of viscous dampers acting at the bottom of the wind tower. To avoid drift in the actuator displacement a filtered time integration of the measured force signal is introduced. Numerical examples demonstrate that the filtered time integration control leads to performance similar to that of passive viscous damping and substantial amplification of the damper deformation without actuator drift.
Results from real time hybrid simulations are compared to full numerical simulations for a hybrid viscous damper, composed of a viscous dashpot in series with an active actuator and a load cell. By controlling the actuator displacement via filtered integral force feedback the damping performance of the hybrid viscous damper is improved, while for pure integral force feedback the damper stroke is instead increased. In the real time hybrid simulations viscous damping is emulated by a bang-bang controlled Magneto-Rheological (MR) damper. The controller activates high-frequency modes and generates drift in the actuator displacement, and only a fraction of the measured damper force can therefore be used as input to the investigated integral force feedback in the real time hybrid simulations.
A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.