In the light of the increasing interest in efficient algorithms for solving abstract argumentation problems and the pervasive availability of multicore machines, a natural research issue is to combine existing argumentation solvers into parallel portfolios. In this work, we introduce six methodologies for the automatic configuration of parallel portfolios of argumentation solvers for enumerating the preferred extensions of a given framework. In particular, four methodologies aim at combining solvers in static portfolios, while two methodologies are designed for the dynamic configuration of parallel portfolios. Our empirical results demonstrate that the configuration of parallel portfolios is a fruitful way for exploiting multicore machines, and that the presented approaches outperform the state of the art of parallel argumentation solvers.
Recent advances in machine learning with big data sets has allowed for significant advances in the optimisation of classification and recognition systems. However, for applications such as situational awareness systems, the entirety of the available data dwarfs the amount permissible for a training set with tractable machine learning optimization times. Furthermore, the performance of any optimized system is highly dependent of the training set correctly and completely representing the entire data space of scenarios. In this paper we present a technique to characterize the entire data space to ascertain the key factors for representation and subsequently select a subset that statistically represents the correct mix of scenarios. We demonstrate the effectiveness of these characterization and subset selection techniques by using a genetic algorithm to optimize the performance of a gunfire recognition system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.