The novel cytokine interferon-gamma-inducing factor (IGIF) augments natural killer (NK) cell activity in cultures of human peripheral blood mononuclear cells (PBMC), similarly to the structurally unrelated cytokine interleukin (IL)-12. IGIF has been found to enhance the production of interferon-gamma (IFN-gamma) and granulocyte/macrophage colony-stimulating factor (GM-CSF) while inhibiting the production of IL-10 in concanavalin A (Con A)-stimulated PBMC. In this study, when anti-CD3 monoclonal antibody (mAb)-stimulated human enriched T cells were exposed to IGIF, the cytokine dose-dependently enhanced the proliferation of the cells and this could be completely inhibited by a neutralizing antibody against IL-2 at lower concentrations of IGIF. Neutralizing antibody against IFN-gamma had only insignificant inhibitory effects on T cell proliferation at higher concentrations of IGIF. Enzyme-linked immunosorbent assays (ELISA) revealed that, like PBMC, T cells exposed to IGIF produced large amounts of IFN-gamma; however, changes in the production of IL-4 and IL-10 were minimal. IGIF, but not IL-12, significantly enhanced IL-2 and GM-CSF production in T cell cultures, as determined by CTLL-2 bioassay and ELISA, respectively; however, both IGIF and IL-12 enhanced IFN-gamma production by the T cells. When T cells were exposed to a combination of IGIF and IL-12, a synergistic effect was observed on the production of IFN-gamma, but not on production of IL-2 and GM-CSF. In conclusion, IGIF enhances T cell proliferation apparently through an IL-2-dependent pathway and enhances Th1 cytokine production in vitro and exhibits synergism when combined with IL-12 in terms of enhanced IFN-gamma production but not IL-2 and GM-CSF production. Based on structural and functional differences from any known cytokines, it was recently proposed that this cytokine be designated interleukin-18.
Artepillin C was extracted from Brazilian propolis. Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) has a molecular weight of 300.40 and possesses antibacterial activity. When artepillin C was applied to human and murine malignant tumor cells in vitro and in vivo, artepillin C exhibited a cytotoxic effect and the growth of tumor cells was clearly inhibited. The artepillin C was found to cause significant damage to solid tumor and leukemic cells by the MTT assay, DNA synthesis assay, and morphological observation in vitro. When xenografts of human tumor cells were transplanted into nude mice, the cytotoxic effects of artepillin C were most noticeable in carcinoma and malignant melanoma. Apoptosis, abortive mitosis, and massive necrosis combined were identified by histological observation after intratumor injection of 500 microg of artepillin C three times a week. In addition to suppression of tumor growth, there was an increase in the ratio of CD4/CD8 T cells, and in the total number of helper T cells. These findings indicate that artepillin C activates the immune system, and possesses direct antitumor activity.
Context. PIONIER stands for PrecisionAims. In this paper, we explain the instrumental concept and describe the standard operational modes and the data reduction strategy. We present the typical performance and discuss how to improve them. Methods. This paper is based on laboratory data obtained during the integrations at IPAG, as well as on-sky data gathered during the commissioning at VLTI. We illustrate the imaging capability of PIONIER on the binaries δ Sco and HIP11231. Results. PIONIER provides six visibilities and three independent closure phases in the H band, either in a broadband mode or with a low spectral dispersion (R = 40), using natural light (i.e. unpolarized). The limiting magnitude is Hmag = 7 in dispersed mode under median atmospheric conditions (seeing <1 , τ 0 > 3 ms) with the 1.8 m Auxiliary Telescopes. We demonstrate a precision of 0.5 deg on the closure phases. The precision on the calibrated visibilities ranges from 3% to 15% depending on the atmospheric conditions. Conclusions. PIONIER was installed and successfully tested as a visitor instrument for the VLTI. It permits high angular resolution imaging studies at an unprecedented level of sensitivity. The successful combination of the four 8 m Unit Telescopes in March 2011 demonstrates that VLTI is ready for four-telescope operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.