Purpose Despite 20 years of research, there remains no robust, globally agreed upon method-or even problem statement-for assessing mineral resource inputs in life cycle impact assessment (LCIA). As a result, inclusion of commonly used methods such as abiotic depletion potential (ADP) in life cycle assessment (LCA)-related evaluation schemes could lead to incorrect decisions being made in many applications. In this paper, we explore in detail how to improve the way that life cycle thinking is applied to the acquisition of mineral resources and their metal counterparts. Methods This paper evaluates the current body of work in LCIA with regard to Bdepletion potential^of mineral resources. Viewpoints from which models are developed are described and analyzed. The assumptions, data sources, and calculations that underlie currently used methods are examined. A generic metal-containing product is analyzed to demonstrate the vulnerability of results to the denominator utilized in calculating ADP. The adherence to the concept of the area of protection (AOP) is evaluated for current models. The use of ore grades, prices, and economic availability in LCIA is reviewed.Results and discussion Results demonstrate that any work on resource depletion in a life cycle context needs to have a very clear objective or LCIA will not accurately characterize mineral resource use from any perspective and decision-making will continue to suffer. New, harmonized terminology is proposed so that LCA practitioners can build better mutual understanding with the mineral industry and recommendations regarding more promising tools for use in life cycle sustainability assessment (LCSA) are given. Conclusions The economic issue of resource availability should be evaluated in parallel with traditional LCA, not within. LCIA developers should look to economists, the market, and society in general, for broader assessments that consider shorter-time horizons than the traditional LCIA methods. To do so, the concept of the AOP in LCA needs to be redefined for LCSA to ensure that models estimate what is intended. Finally, recommendations regarding mineral resource assessment are provided to ensure that future research has a sound basis and practitioners can incorporate the appropriate tools in their work.
Purpose To support the data requirements of stakeholders, the Nickel Institute (NI) conducted a global life cycle impact assessment (LCIA) to show, with indicators, the potential environmental impacts of the production of nickel and ferronickel from mine to refinery gate. A metal industry wide agreed approach on by-products and allocation was applied. Methods Nine companies, comprising 19 operations, contributed data, representing 52 % of global nickel metal production and 40 % of global ferronickel production. All relevant pyroand hydrometallurgical production routes were considered, across most major nickel-producing regions. Data from Russia, the biggest nickel-producing nation, was included; the Chinese industry did not participate. 2011 was chosen as reference year for data collection. The LCIA applied allocation of impacts of by-products using both economic and mass allocations. A sensitivity analysis was conducted to further understand the relevance and impact of the different allocation approaches. Results and discussion The primary extraction and refining steps are the main contributors to primary energy demand (PED) and global warming potential (GWP), contributing 60 and 70 % to the PED for the production of 1 kg class I nickel and 1 kg nickel in ferronickel, respectively, and over 55 % of the GWP for both nickel products. The PED for 1 kg class 1 nickel was calculated to be 147 MJ, whilst the PED for 1 kg nickel in ferronickel was calculated to be three times higher at 485 MJ. The main factors influencing energy demand in the metallurgical processes are ore grade and ore mineralogy. Sulphidic ore is less energy intensive to process than oxidic ore. Eighty-six percent of the production volume from class 1 nickel producers, in this study, is from sulphidic ore. All ferronickel was produced from oxidic ore. The LCIA results, including a sensitivity analysis of the impact of producers with higher and lower PED, reflect the influence of the production route on energy demand and on environmental impact categories. Conclusions Conformant to relevant ISO standards, and backed-up with a technical and critical review, this LCIA quantifies the environmental impacts associated with the production of the main nickel products. With this study, a sound background dataset for downstream users of nickel has been provided. The Nickel Institute aims to update their data in the coming years to reflect upon changes in technology, energy efficiency, and raw material input.
Purpose Built in 1941, the Progreso Pier was the first concrete structure in the world built with nickel-containing stainless steel reinforcement. The Pier has been in service for over 70 years without any significant repair or maintenance activities. The aim of this study was to understand the environmental and economic implications of selecting nickel-containing stainless steel reinforcement using the Progreso Pier as the case study. Methods A combined environmental life cycle assessment (LCA) and life cycle costing (LCC) study was conducted. The analysis considered the potential environmental impacts and the net present cost of the stainless steel reinforced structure from cradle to grave and compared it to the same structure using conventional carbon steel. Results and discussion The results indicated that while using stainless steel reinforcement resulted in a marginally higher environmental impact after initial construction, this is offset by the increased service life and, hence, less frequent maintenance and reconstruction activities. Relative to the as-built stainless steel reinforcement design, the environmental impacts of the carbon steel reinforced design are between 69 and 79 % higher over the analysis period. Similar observations were made for the other investigated impact categories. The cost implications of using stainless steel reinforcement show economic benefits that are complementary to the environmental benefits. Similar to the LCA, the service life benefits outweigh the higher unit costs for stainless steel, assuming a discount rate of 0.01 % as the baseline scenario. The carbon steel reinforced design has a net present cost that is 44 % higher than the as-built stainless steel reinforcement design. The crossover point for the two designs occurs at year 50, which corresponds to the reconstruction activity. A sensitivity analysis shows that the results and conclusions are sensitive to the choice in discount rate: Rates 3 % and lower produce net present costs that are lower for the as-built design; rates 4 % and higher produce net present costs that are lower for the alternative design. Conclusions The study demonstrates how LCA and LCC are complementary tools that can be used in decision-making for sustainable construction. The Progreso Pier exemplifies the importance of considering the entire life cycle with service life and recycling as well as long-term life cycle impacts of infrastructure projects from an environmental and economic perspective.
The name of the author Johannes A. Drielsma was rendered wrongly in the original publication but has since been corrected. The publisher apologizes for this error and the inconvenience caused.The online version of the original article can be found at http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.