Very few image processing applications dealt with x-ray luggage scenes in the past. In this paper, a series of common image enhancement techniques are first applied to x-ray data and results shown and compared. A novel simple enhancement method for data de-cluttering, called image hashing, is then described. Initially, this method was applied using manually selected thresholds, where progressively de-cluttered slices were generated and displayed for screeners. Further automation of the hashing algorithm (multi-thresholding) for the selection of a single optimum slice for screener interpretation was then implemented. Most of the existing approaches for automatic multi-thresholding, data clustering, and cluster validity measures require prior knowledge of the number of thresholds or clusters, which is unknown in the case of luggage scenes, given the variety and unpredictability of the scene's content. A novel metric based on the Radon transform was developed. This algorithm finds the optimum number and values of thresholds to be used in any multi-thresholding or unsupervised clustering algorithm. A comparison between the newly developed metric and other known metrics for image clustering is performed. Clustering results from various methods demonstrate the advantages of the new approach.
Very few image processing applications have dealt with x-ray luggage scenes in the past. Concealed threats in general, and low-density items in particular, pose a major challenge to airport screeners. A simple enhancement method for data decluttering is introduced. Initially, the method is applied using manually selected thresholds to progressively generate decluttered slices. Further automation of the algorithm, using a novel metric based on the Radon transform, is conducted to determine the optimum number and values of thresholds and to generate a single optimum slice for screener interpretation. A comparison of the newly developed metric to other known metrics demonstrates the merits of the new approach. On-site quantitative and qualitative evaluations of the various decluttered images by airport screeners further establishes that the single slice from the image hashing algorithm outperforms traditional enhancement techniques with a noted increase of 58% in lowdensity threat detection rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.