We describe the Open Motion Planning Library (OMPL), a new library for sampling-based motion planning, which contains implementations of many state-of-the-art planning algorithms. The library is designed in a way that allows the user to easily solve a variety of complex motion planning problems with minimal input. OMPL facilitates the addition of new motion planning algorithms and it can be conveniently interfaced with other software components. A simple graphical user interface (GUI) built on top of the library, a number of tutorials, demos and programming assignments have been designed to teach students about sampling-based motion planning. Finally, the library is also available for use through the Robot Operating System (ROS).
The definition of reaction coordinates for the characterization of a protein-folding reaction has long been a controversial issue, even for the ''simple'' case in which one single free-energy barrier separates the folded and unfolded ensemble. We propose a general approach to this problem to obtain a few collective coordinates by using nonlinear dimensionality reduction. We validate the usefulness of this method by characterizing the folding landscape associated with a coarse-grained protein model of src homology 3 as sampled by molecular dynamics simulations. The folding freeenergy landscape projected on the few relevant coordinates emerging from the dimensionality reduction can correctly identify the transition-state ensemble of the reaction. The first embedding dimension efficiently captures the evolution of the folding process along the main folding route. These results clearly show that the proposed method can efficiently find a low-dimensional representation of a complex process such as protein folding.reaction coordinate ͉ transition state ͉ manifold ͉ embedding ͉ ISOMAP
-Self-reconfigurable robots are modular robots that can autonomously change their shape and size to meet specific operational demands. Recently, there has been a great interest in using self-reconfigurable robots in applications such as reconnaissance, rescue missions, and space applications. Designing and controlling self-reconfigurable robots is a difficult task. Hence, the research has primarily been focused on developing systems that can function in a controlled environment. This paper presents a novel self-reconfigurable robotic system called SuperBot, which addresses the challenges of building and controlling deployable self-reconfigurable robots. Six prototype modules have been built and preliminary experimental results demonstrate that SuperBot is a flexible and powerful system that can be used in challenging realworld applications.
Abstract-We present a new approach to path planning for deformable linear (one-dimensional) objects such as flexible wires. We introduce a method for efficiently computing stable configurations of a wire subject to manipulation constraints. These configurations correspond to minimal-energy curves. By restricting the planner to minimal-energy curves, the execution of a path becomes easier. Our curve representation is adaptive in the sense that the number of parameters automatically varies with the complexity of the underlying curve. We introduce a planner that computes paths from one minimal-energy curve to another such that all intermediate curves are also minimal-energy curves. This planner can be used as a powerful local planner in a sampling-based roadmap method. This makes it possible to compute a roadmap of the entire "shape space," which is not possible with previous approaches. Using a simplified model for obstacles, we can find minimal-energy curves of fixed length that pass through specified tangents at given control points. Our work has applications in cable routing, and motion planning for surgical suturing and snake-like robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.