Both movement differences and disorders are common within autism spectrum disorders (ASD). These differences have wide and heterogeneous variability among different ages and sub-groups all diagnosed with ASD. Gait was studied in a more homogeneously identified group of nine teenagers and young adults who scored as “severe” in both measures of verbal communication and overall rating of Autism on the Childhood Autism Rating Scales (CARS). The ASD individuals were compared to a group of typically developing university undergraduates of similar ages. All participants walked a distance of 6-meters across a GAITRite (GR) electronic walkway for six trials. The ASD and comparison groups differed widely on many spatiotemporal aspects of gait including: step and stride length, foot positioning, cadence, velocity, step time, gait cycle time, swing time, stance time, and single and double support time. Moreover, the two groups differed in the percentage of the total gait cycle in each of these phases. The qualitative rating of “Body Use” on the CARS also indicated severe levels of unusual body movement for all of the ASD participants. These findings demonstrate that older teens and young adults with “severe” forms of Verbal Communication Impairments and Autism differ widely in their gait from typically developing individuals. The differences found in the current investigation are far more pronounced compared to previous findings with younger and/or less severely involved individuals diagnosed with ASD as compared to typically developing controls. As such, these data may be a useful anchor-point in understanding the trajectory of development of gait specifically and motor functions generally.
We have defined the complex bed topography for a section of a small temperate glacier using 50 MHz monostatic short-pulse radar data and a synthetic-aperture array-processing method. The data were collected on a 100 m by 340 m array grid in the upper stem of Gulkana Glacier, central Alaska, U.S.A. The array processing was based on a modified three-dimensional (3-D) Kirchhoff migration integral and implemented with a synthetic-aperture approach that uses sequences of overlapping sub-arrays to generate depth images in vertical planes. Typical sub-array beam patterns are generally <5° at the −6 dB level, giving a flashlight-like searching capability without distorting the wavelet shape. The bed topography was constructed using normal reflections picked from 3-D array depth images. In some instances reflections were imaged outside the data-cover-age area. The bed surface dips steeply, both parallel and transverse to the direction of ice flow. The maximum observed depth is roughly 140 m. The 3-D method resolved bed dips up to 45°. In regions of steepest dip, it improved depth accuracy by 36% compared with raw data, and by 15% compared with standard two-dimensional (2-D) migration. Over 12 dB of signal-to-noise improvement and improved spatial resolution was achieved compared to raw data and 2-D migration. False bottom layering seen in the raw data and in 2-D migrations is not observed in the 3-D array results. Furthermore, loss of bottom reflections is shown by the 3-D migration to be attributable to the dip and curvature of the reflector, and not scattering losses or signal clutter from englacial inclusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.