The host restriction factor TRIM5␣ mediates species-specific, early blocks to retrovirus infection; susceptibility to these blocks is determined by viral capsid sequences. Here we demonstrate that TRIM5␣ variants from Old World monkeys specifically associate with the HIV type 1 (HIV-1) capsid and that this interaction depends on the TRIM5␣ B30.2 domain. Human and New World monkey TRIM5␣ proteins associated less efficiently with the HIV-1 capsid, accounting for the lack of restriction in cells of these species. After infection, the expression of a restricting TRIM5␣ in the target cells correlated with a decrease in the amount of particulate capsid in the cytosol. In some cases, this loss of particulate capsid was accompanied by a detectable increase in soluble capsid protein.Inhibiting the proteasome did not abrogate restriction. Thus, TRIM5␣ restricts retroviral infection by specifically recognizing the capsid and promoting its rapid, premature disassembly.
To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4+ T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cell–specific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimer’s and Parkinson’s disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants.
The expression of certain genes involved in fundamental metabolism is regulated by metabolite-binding ''riboswitch'' elements embedded within their corresponding mRNAs. We have identified at least six additional elements within the Bacillus subtilis genome that exhibit characteristics of riboswitch function (glmS, gcvT, ydaO͞yuaA, ykkC͞yxkD, ykoK, and yybP͞ykoY). These motifs exhibit extensive sequence and secondary-structure conservation among many bacterial species and occur upstream of related genes. The element located upstream of the glmS gene in Grampositive organisms functions as a metabolite-dependent ribozyme that responds to glucosamine-6-phosphate. Other motifs form complex folded structures when transcribed as RNA molecules and carry intrinsic terminator structures. These findings indicate that riboswitches serve as a major genetic regulatory mechanism for the control of metabolic genes in many microbial species. R iboswitches are highly structured domains within mRNAs that precisely sense metabolites and control gene expression (1). These RNA elements are capable of binding to a variety of target compounds and subsequently modulating transcription and translation with performance characteristics that are similar to those of protein genetic factors. Typically, each riboswitch is composed of a conserved metabolite-binding domain (aptamer) located upstream of a variable sequence region (expression platform) that dictates the level of gene expression. Allosteric changes brought about by metabolite binding to the aptamer are harnessed by the expression platform to modulate the expression of the adjacent gene or operon. Riboswitches are versatile genetic control elements. In some instances, both transcription and translation control are used by the same aptamer class in the same prokaryotic organism (e.g., see ref.2). Evidence also shows that riboswitches can use mRNA-processing events to modulate gene expression (3, 4).The various metabolites that are detected by known riboswitches are of fundamental importance to living systems (5). On this basis, we have speculated that modern riboswitches might be the remaining representatives of an ancient metabolitemonitoring system that was present in the RNA World (5-9). The wide distribution of some riboswitch classes among microbes (e.g., see refs. 5 and 9-14) and the presence of metabolitebinding RNA domains in eukaryotes (4) support this hypothesis. Each of the seven classes of riboswitches reported (1, 5) was examined for metabolite-binding function because published genetic evidence showed that these elements were important for genetic control. Because the regulation of many metabolism genes has not been characterized in detail, it is possible that numerous other metabolite-binding RNA motifs exist in nature.The riboswitches known to be present in prokaryotes are typically located in noncoding or intergenic regions (IGRs). Therefore, the examination of unusually long IGRs for indications of conserved sequence and secondary-structure elements should yield new...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.