PDMS-3F-1.1-PDMS and PDMS-3F-4.5-PDMS triblock hybrid elastomers are investigated, wherein (1) 3F-1.1 and 3F-4.5 are poly(3-methyl-3-trifluoroethoxymethyl)-1,3-propylene oxide with M n = 1.1 or 4.5 kDa, (2) segments are linked by urethane/urea forming reactions, and (3) the intermediate PDMS-3F-PDMS aminopropyl end segments are end-capped with isocyanatopropyltriethoxysilane. After condensation cure, PDMS-3F-PDMS triblock hybrids (A-1.1 and A-4.5) form robust elastomers. In a second set, bis(triethoxysilylethane), BTESE, was incorporated to probe effects of increased siliceous domain content (B-1.1, B-4.5). All compositions are optically transparent due to nearly identical refractive indexes for 3F and PDMS segments. TM-AFM images for A-4.5, A-1.1, and B-4.5 fracture surfaces reveal microscale bulk phase separation. The A-4.5 triblock hybrid shows a particularly interesting morphology comprised of 2−3 μm ovaloids (low modulus) surrounded by a higher modulus matrix. A model is proposed for this microscale morphology based on the relative rates of physical network formation (PN, H-bonding) and chemical network formation (CN, SiO 1.5 ) during coating deposition Despite low hard segment weight percents (2.6−3.5) the hybrid triblocks have moderate toughness with strain at break ranging from 260 to 492%. Triblock hybrid elastomer B-1.1 has the highest −SiO 1.5 wt % (mostly from BTESE) and lowest 3F wt % (3F-1.1). No sign of microscale phase separation is observed by TM-AFM imaging, and a separate T g for the 3F segment is not detected by DMA; these findings are ascribed to network constrained phase separation of that results in 3F being incorporated in an "interphase". The absence of a separate T g for 3F leads to a gradual decrease in storage modulus (8 to 1.4 MPa) from −90 to 150 °C. In contrast to the complex bulk morphology, TM-AFM imaging shows the hybrid surfaces are devoid of microstructural features attributable to phase separation. Based on contact angle measurements and XPS analysis, the outermost surface for all PDMS-3F-PDMS hybrid triblocks elastomers is dominated by PDMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.