Posttranslational modification of proteins by the small molecule ubiquitin is a key regulatory event, and the enzymes catalyzing these modifications have been the focus of many studies. Deubiquitinating enzymes, which mediate the removal and processing of ubiquitin, may be functionally as important but are less well understood. Here, we present an inventory of the deubiquitinating enzymes encoded in the human genome. In addition, we review the literature concerning these enzymes, with particular emphasis on their function, specificity, and the regulation of their activity.
Ubiquitin-specific proteases (USPs) are papain-like isopeptidases with variable inter- and intramolecular regulatory domains. To understand the effect of these domains on USP activity, we have analyzed the enzyme kinetics of 12 USPs in the presence and absence of modulators using synthetic reagents. This revealed variations of several orders of magnitude in both the catalytic turnover (k(cat)) and ubiquitin (Ub) binding (K(M)) between USPs. Further activity modulation by intramolecular domains affects both the k(cat) and K(M), whereas the intermolecular activators UAF1 and GMPS mainly increase the k(cat). Also, we provide the first comprehensive analysis comparing Ub chain preference. USPs can hydrolyze all linkages and show modest Ub-chain preferences, although some show a lack of activity toward linear di-Ub. This comprehensive kinetic analysis highlights the variability within the USP family.
Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes.
Accurate chromosome segregation relies on the mitotic spindle checkpoint. This checkpoint acts to restrict ubiquitin ligase activity of the Anaphase-promoting complex (APC/C) in mitosis until all chromosomes are bipolarly attached to the mitotic spindle. We performed a functional RNAi-based screen to identify De-ubiquitinating enzymes (Dubs) involved in mitotic progression. We identified Usp39 as a new factor required to maintain the spindle checkpoint and support successful cytokinesis. Strikingly, although Usp39 clearly contains an ubiquitin-protease domain, we show that Usp39 is entirely deprived of Dub activity. However, consistent wilt a previously described role for Usp39 in mRNA processing, we observed specific reduction in Aurora B-mRNA levels after depletion of Usp39. Although we find that exogenously expressed Aurora B cDNA is not sufficient to rescue the checkpoint defect of Usp39-depleted cells, Aurora B expression is restored. Our observations suggest Usp39 to be involved in splicing of Aurora B and other mRNAs that are essential for proper spindle checkpoint function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.