The human eye is a remarkable imaging device, with many attractive design features. Prominent among these is a hemispherical detector geometry, similar to that found in many other biological systems, that enables a wide field of view and low aberrations with simple, few-component imaging optics. This type of configuration is extremely difficult to achieve using established optoelectronics technologies, owing to the intrinsically planar nature of the patterning, deposition, etching, materials growth and doping methods that exist for fabricating such systems. Here we report strategies that avoid these limitations, and implement them to yield high-performance, hemispherical electronic eye cameras based on single-crystalline silicon. The approach uses wafer-scale optoelectronics formed in unusual, two-dimensionally compressible configurations and elastomeric transfer elements capable of transforming the planar layouts in which the systems are initially fabricated into hemispherical geometries for their final implementation. In a general sense, these methods, taken together with our theoretical analyses of their associated mechanics, provide practical routes for integrating well-developed planar device technologies onto the surfaces of complex curvilinear objects, suitable for diverse applications that cannot be addressed by conventional means.
Self-assembly is an effective strategy for the creation of periodic structures at the nanoscale. However, because microelectronic devices use free-form design principles, the insertion point of self-assembling materials into existing nanomanufacturing processes is unclear. We directed ternary blends of diblock copolymers and homopolymers that naturally form periodic arrays to assemble into nonregular device-oriented structures on chemically nanopatterned substrates. Redistribution of homopolymer facilitates the defect-free assembly in locations where the domain dimensions deviate substantially from those formed in the bulk. The ability to pattern nonregular structures using self-assembling materials creates new opportunities for nanoscale manufacturing.
Self-assembling block copolymers are of interest for nanomanufacturing due to the ability to realize sub-100 nm dimensions, thermodynamic control over the size and uniformity and density of features, and inexpensive processing. The insertion point of these materials in the production of integrated circuits, however, is often conceptualized in the short term for niche applications using the dense periodic arrays of spots or lines that characterize bulk block copolymer morphologies, or in the long term for device layouts completely redesigned into periodic arrays. Here we show that the domain structure of block copolymers in thin films can be directed to assemble into nearly the complete set of essential dense and isolated patterns as currently defined by the semiconductor industry. These results suggest that block copolymer materials, with their intrinsically advantageous self-assembling properties, may be amenable for broad application in advanced lithography, including device layouts used in existing nanomanufacturing processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.