To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
In de novo drug design, computational strategies are used to generate novel molecules with good affinity to the desired biological target. In this work, we show that recurrent neural networks can be trained as generative models for molecular structures, similar to statistical language models in natural language processing. We demonstrate that the properties of the generated molecules correlate very well with the properties of the molecules used to train the model. In order to enrich libraries with molecules active toward a given biological target, we propose to fine-tune the model with small sets of molecules, which are known to be active against that target. Against Staphylococcus aureus, the model reproduced 14% of 6051 hold-out test molecules that medicinal chemists designed, whereas against Plasmodium falciparum (Malaria), it reproduced 28% of 1240 test molecules. When coupled with a scoring function, our model can perform the complete de novo drug design cycle to generate large sets of novel molecules for drug discovery.
Reaction prediction and retrosynthesis are the cornerstones of organic chemistry. Rule-based expert systems have been the most widespread approach to computationally solve these two related challenges to date. However, reaction rules often fail because they ignore the molecular context, which leads to reactivity conflicts. Herein, we report that deep neural networks can learn to resolve reactivity conflicts and to prioritize the most suitable transformation rules. We show that by training our model on 3.5 million reactions taken from the collective published knowledge of the entire discipline of chemistry, our model exhibits a top10-accuracy of 95 % in retrosynthesis and 97 % for reaction prediction on a validation set of almost 1 million reactions.
The suitability of a hybrid density functional to qualitatively reproduce geometric and energetic details of parallel pi-stacked aromatic complexes is presented. The hybrid functional includes an ad hoc mixture of half the exact (HF) exchange with half of the uniform electron gas exchange, plus Lee, Yang, and Parr's expression for correlation energy. This functional, in combination with polarized, diffuse basis sets, gives a binding energy for the parallel-displaced benzene dimer in good agreement with the best available high-level calculations reported in the literature, and qualitatively reproduces the local MP2 potential energy surface of the parallel-displaced benzene dimer. This method was further critically compared to high-level calculations recently reported in the literature for a range of pi-stacked complexes, including monosubstituted benzene-benzene dimers, along with DNA and RNA bases, and generally agrees with MP2 and/or CCSD(T) results to within +/-2 kJ mol(-1). We also show that the resulting BH&H binding energy is closely related to the electron density in the intermolecular region. The net result is that the BH&H functional, presumably due to fortuitous cancellation of errors, provides a pragmatic, computationally efficient quantum mechanical tool for the study of large pi-stacked systems such as DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.