Mass customization along with the ability to generate designs using medical imaging data makes 3D printing an attractive method for the fabrication of patient-tailored drug and medical devices. Herein we describe the application of Continuous Liquid Interface Production (CLIP) as a method to fabricate biocompatible and drug-loaded devices with controlled release properties, using liquid resins containing active pharmaceutical ingredients (API). In this work, we characterize how the release kinetics of a model small molecule, rhodamine B-base (RhB), are affected by device geometry, network crosslink density, and the polymer composition of polycaprolactone- and poly (ethylene glycol)-based networks. To demonstrate the applicability of using API-loaded liquid resins with CLIP, the UV stability was evaluated for a panel of clinically-relevant small molecule drugs. Finally, select formulations were tested for biocompatibility, degradation and encapsulation of docetaxel (DTXL) and dexamethasone-acetate (DexAc). Formulations were shown to be biocompatible over the course of 175 days of in vitro degradation and the clinically-relevant drugs could be encapsulated and released in a controlled fashion. This study reveals the potential of the CLIP manufacturing platform to serve as a method for the fabrication of patient-specific medical and drug-delivery devices for personalized medicine.
The role of a polarized transition state and solvent effects on nitrate radical reactions was examined with a previously under-reported class of substrates, ethers, for their atmospheric implications. Absolute rate constants for hydrogen abstraction from a series of alcohols, ethers, and alkanes by nitrate radical have been measured in acetonitrile, water, and mixtures of these two solvents. Across all of these classes of compounds, using a modified form of the Evans−Polanyi relationship, it is demonstrated that the observed structure/reactivity trends can be reconciled by considering the number of abstractable hydrogens, strength of the C−H bond, and ionization potential (IP) of the substrate. Hydrogen abstractions by nitrate radical occur with low selectivity and are characterized by an early transition state (α ≈ 0.3). The dependence of the rate constant on IP suggests a polar transition state with some degree (<10%) of charge transfer. These conclusions stand for reactions conducted in solution (CH 3 CN and H 2 O) as well as gas-phase values. Because of this polar transition state, the rate constants increase going from the gas phase to a polar solvent, and the magnitude of the increase is consistent with Kirkwood theory.
The rate constant for the β-scission of the cumyloxyl radical (k) was measured in the presence of various added electrolytes in acetonitrile and DMSO solvent. The results show that in CHCN, k increases in the presence of added electrolyte, roughly paralleling the size of the cation: Li > Mg ≈ Na > BuN > no added electrolyte. As suggested by Bietti et al. earlier, this effect is attributable to stabilizing ion-dipole interactions in the transition state of the developing carbonyl group, a conclusion further amplified by MO calculations (gas phase) reported herein. Compared to the gas phase predictions, however, this effect is seriously attenuated in solution because complexation of the cation to the electrophilic alkoxyl radical (relative to the solvent, CHCN) is very weak. Because the interaction of Li and Na is much stronger with DMSO than with CHCN, addition of these ions has no effect on the rate of β-scission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.