We report on the realization of quantum degenerate gas mixtures of the alkaline-earth element strontium with the alkali element rubidium. A key ingredient of our scheme is sympathetic cooling of Rb by Sr atoms that are continuously laser cooled on a narrow linewidth transition. This versatile technique allows us to produce ultracold gas mixtures with a phase-space density of up to 0.06 for both elements. By further evaporative cooling we create double Bose-Einstein condensates of 87Rb with either 88Sr or 84Sr, reaching more than 10^5 condensed atoms per element for the 84Sr-87Rb mixture. These quantum gas mixtures constitute an important step towards the production of a quantum gas of polar, open-shell RbSr molecules.Comment: 9 pages, 5 figure
Degenerate quantum gases of alkaline-earth-like elements open new opportunities in research areas ranging from molecular physics to the study of strongly correlated systems. These experiments exploit the rich electronic structure of these elements, which is markedly different from the one of other species for which quantum degeneracy has been attained. Specifically, alkaline-earth-like atoms, such as strontium, feature metastable triplet states, narrow intercombination lines, and a nonmagnetic, closed-shell ground state. This review covers the creation of quantum degenerate gases of strontium and the first experiments performed with this new system. It focuses on laser-cooling and evaporation schemes, which enable the creation of Bose-Einstein condensates and degenerate Fermi gases of all strontium isotopes, and shows how they are used for the investigation of optical Feshbach resonances, the study of degenerate gases loaded into an optical lattice, as well as the coherent creation of Sr2 molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.