We present a study of a mobile mixed reality game called Can You See Me Now? in which online players are chased through a virtual model of a city by ‘runners’ (professional performers equipped with GPS and WiFi technologies) who have to run through the actual city streets in order to catch the players. We present an ethnographic study of the game as it toured through two different cities and draws upon video recordings of online players, runners, technical support crew, and also on system logs of text communication. Our study reveals the diverse ways in which online players experienced the uncertainties inherent in GPS and WiFi, including being mostly unaware of them, but sometimes seeing them as problems, or treating the as a designed feature of the game, and even occasionally exploiting them within gameplay. In contrast, the runners and technical crew were fully aware of these uncertainties and continually battled against them through an ongoing and distributed process of orchestration. As a result, we encourage designers to deal with such uncertainties as a fundamental characteristic of location-based experiences rather than treating them as exceptions or bugs that might be ironed out in the future. We argue that designers should explicitly consider four potential states of being of a mobile participant: connected and tracked, connected but not tracked, tracked but not connected, and neither connected nor tracked. We then introduce five strategies that might be used to deal with uncertainty in these different states for different kinds of participant: remove it, hide it, manage it, reveal it, and exploit it. Finally, we present proposals for new orchestration interfaces that reveal the ‘seams’ in the underlying technical infrastructure by visualizing the recent performance of GPS and WiFi and predicting the likely future performance of GPS.
Mobile sensing and mapping applications are becoming more prevalent because sensing hardware is becoming more portable and more affordable. However, most of the hardware uses small numbers of fixed sensors that report and share multiple sets of environmental data which raises privacy concerns. Instead, these systems can be decentralized and managed by individuals in their public and private spaces. This paper describes a robust system called MobGeoSens which enables individuals to monitor their local environment (e.g. pollution and temperature) and their private spaces (e.g. activities and health) by using mobile phones in their day to day life.The MobGeoSen is a combination of software components that facilitates the phone's internal sensing devices (e.g. microphone and camera) and external wireless sensors (e.g. data loggers and GPS receivers) for data collection. It also adds a new dimension of spatial localization to the data collection process and provides the user with both textual and spatial cartographic displays. While collecting the data, individuals can interactively add annotations and photos which are automatically added and integrated in the visualization file/log. This makes it easy to visualize the data, photos and annotations on a spatial and temporal visualization tool. In addition, the paper will present ways in which mobile phones can be used as noise sensors using an on-device microphone. Finally, we present our experiences with school children using the above mentioned system to measure their exposure to environmental pollution.
This paper describes the development of nQuire, a software application to guide personal inquiry learning. nQuire provides teacher support for authoring, orchestrating and monitoring inquiries as well as student support for carrying out, configuring and reviewing inquiries. nQuire allows inquiries to be scripted and configured in various ways, so that personally relevant, rather than off-the-shelf inquiries, can be created and used by teachers and students. nQuire incorporates an approach to specifying learning flow that provides flexible access to current inquiry activities without precluding access to other activities for review and orientation. Dependencies between activities are automatically handled, ensuring decisions made by the student or teacher are propagated through the inquiry. nQuire can be used to support inquiry activities across individual, group and class levels at different parts of the inquiry and offers a flexible, web-based approach that can incorporate different devices (smart phone, netbook, PC) and does not rely on constant connectivity.
We present two studies of participatory sensing in the wild, in which groups of young people used sensors to collect environmental data along with contextual information such as photographs and written observations. These studies reveal how participants focused their attention on key events of interest, providing detailed information over a background of less carefully gathered automatic readings. Participants responded to events in their surroundings, sudden changes in sensor data, and recorded details relevant to the process of gathering the data itself. Based on these studies a framework is described, highlighting the negotiation of five activities in the experiences; planning, testing, navigation, capture and reflection.
We investigate the use of mobile and sensor technologies for school science investigations, to bring about a more engaging and hands-on approach to science learning. We report early findings from two trials carried out within the Participate project, where schoolchildren were given a range of off the shelf and newly developed technologies to carry out data collection and analysis tasks. Indications are that, not only are the tasks engaging for the pupils, but aspects such as personalization of data, contextual information, and reflection upon both the data and its collection, are important factors in obtaining and retaining their interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.