The Wnt cell-cell signaling pathway plays a critical and evolutionarily conserved role in directing cell fates during embryogenesis. In addition, inappropriate activation of the Wnt signal transduction pathway plays a role in a variety of human cancers. Many recent studies of Wnt signaling have provided mechanistic insight into these dual roles. Here we focus on two areas of rapid advance: (i) the machinery that regulates the stability of the key signal transducer, β-catenin, and (ii) the effect of Wnt signaling on cellular targets outside the nucleus, the actin and microtubule cytoskeletons.
The vertebrate transcription factors TCF (T cell factor) and LEF (lymphocyte enhancer binding factor) interact with beta-catenin and are hypothesized to mediate Wingless/Wnt signaling. We have cloned a maternally expressed Drosophila TCF family member, dTCF. dTCF binds a canonical TCF DNA motif and interacts with the beta-catenin homolog Armadillo. Previous studies have identified two regions in Armadillo required for Wingless signaling. One of these interacts with dTCF, while the other constitutes a transactivation domain. Mutations in dTCF and expression of a dominant-negative dTCF transgene cause a segment polarity phenotype and affect expression of the Wingless target genes engrailed and Ultrabithorax. Epistasis analysis positions dTCF downstream of armadillo. The Armadillo-dTCF complex mediates Wingless signaling as a bipartite transcription factor.
Wingless/Wnt signalling directs cell-fate choices during embryonic development. Inappropriate reactivation of the pathway causes cancer. In Drosophila, signal transduction from Wingless stabilizes cytosolic Armadillo, which then forms a bipartite transcription factor with the HMG-box protein Drosophila Tcf (dTcf) and activates expression of Wingless-responsive genes. Here we report that in the absence of Armadillo, dTcf acts as a transcriptional repressor of Wingless-responsive genes, and we show that Groucho acts as a corepressor in this process. Reduction of dTcf activity partially suppresses wingless and armadillo mutant phenotypes, leading to derepression of Wingless-responsive genes. Furthermore, overexpression of wild-type dTcf enhances the phenotype of a weak wingless allele. Finally, mutations in the Drosophila groucho gene also suppress wingless and armadillo mutant phenotypes as Groucho physically interacts with dTcf and is required for its full repressor activity.
Cadherin-based adherens junctions (AJs) mediate cell adhesion and regulate cell shape change. The nectin–afadin complex also localizes to AJs and links to the cytoskeleton. Mammalian afadin has been suggested to be essential for adhesion and polarity establishment, but its mechanism of action is unclear. In contrast, Drosophila melanogaster’s afadin homologue Canoe (Cno) has suggested roles in signal transduction during morphogenesis. We completely removed Cno from embryos, testing these hypotheses. Surprisingly, Cno is not essential for AJ assembly or for AJ maintenance in many tissues. However, morphogenesis is impaired from the start. Apical constriction of mesodermal cells initiates but is not completed. The actomyosin cytoskeleton disconnects from AJs, uncoupling actomyosin constriction and cell shape change. Cno has multiple direct interactions with AJ proteins, but is not a core part of the cadherin–catenin complex. Instead, Cno localizes to AJs by a Rap1- and actin-dependent mechanism. These data suggest that Cno regulates linkage between AJs and the actin cytoskeleton during morphogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.