Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Rα2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia. IntroductionEpithelial cell hyperplasia and metaplasia are common consequences of inflammation and may be associated with protective as well as pathogenic outcomes. In the lung, airway epithelial remodeling can be life threatening, since mucous cell metaplasia is the foundation for hypersecretion that can obstruct the airway lumen. Despite the critical nature of this process, little is known about how mucous cell metaplasia develops in the setting of acute or chronic inflammatory disease. Particularly, little is known about the mechanism for what is likely the most common cause of mucous cell metaplasia in the lung, i.e., respiratory viral infection, since previous work has focused on bacterial, allergic, and carcinogenic stimuli. Perhaps because of the paucity of mechanistic information, no effective and specific pharmacologic treatment is currently available to treat epithelial cell metaplasia in general or mucous cell metaplasia in particular.In this context, recent work on mucous cell metaplasia has often focused on signaling pathways initiated by activation of the IL-13 receptor (IL-13R) and EGFR (also designated ErbB1 and HER1). The experimental role of IL-13R was established when a decoy receptor for IL-13 (soluble IL-13Rα2-Fc) was found to inhibit allergen-induced mucous (goblet) cell formation in mice (1, 2). These reports have been followed by evidence that IL-13 can directly drive mucin gene expression in airway epithelial cells cultured under physiologic conditions and in vivo (3-6). Moreover, IL-13 is often overexpressed in the setting of mucous cell metaplasia in asthma
SummaryFrancisella tularensis are the causative agent of the zoonotic disease, tularaemia. Among four F. tularensis subspecies, ssp. novicida (F. novicida) is pathogenic only for immunocompromised individuals, while all four subspecies are pathogenic for mice. This study utilized proteomic and bioinformatic approaches to identify seven F. novicida secreted proteins and the corresponding Type IV pilus (T4P) secretion system. The secreted proteins were predicted to encode two chitinases, a chitin binding protein, a protease (PepO), and a b-glucosidase (BglX). The transcription of F. novicida pepO and bglX was regulated by the virulence regulator MglA. Intradermal infection of mice with F. novicida mutants defective in T4P secretion system or PepO resulted in enhanced F. novicida spread to systemic sites. Infection with F. novicida pepO mutants also resulted in increased neutrophil infiltration into the mouse airways. PepO is a zinc protease that is homologous to mammalian endothelin-converting enzyme ECE-1. Therefore, secretion of PepO likely results in increased production of endothelin and increased vasoconstriction at the infection site in skin that limits the F. novicida spread. Francisella human pathogenic strains contain a mutation in pepO predicted to abolish its secretion. Loss of PepO function may have contributed to evolution of highly virulent Francisellae.
STAT (signal transducer and activator of transcription) proteins combine with cytokine receptors and receptor-associated kinases in distinct protein/protein interactions that are critical for STAT-dependent signal transduction events, but the nature of any subsequent STAT interactions with DNA-binding proteins in the nucleus is less certain. Based on assays of DNA/protein binding and activity of transfected reporter plasmids, we determined that occupation of contiguous DNA-binding sites for Stat1 (the first member of the STAT family) and the transcriptional activator Sp1 are both required for full activation of the intercellular adhesion molecule-1 gene by interferon-␥. Thus, Stat1 binding to DNA cannot by itself be equated with biologic actions of Stat1. In co-immunoprecipitation experiments, we also obtained evidence of direct and selective Stat1/Sp1 interaction (in primary culture cells without overexpression), further indicating that Stat1/Sp1 synergy confers an element of specificity in the pathway leading to cytokine-activated transcription and cytokine-dependent immunity and inflammation. STAT1 proteins act as critical intermediates in cytokine-dependent gene activation based on their dual capacities for signal transduction (at the cell surface) and activation of transcription (in the nucleus) (1). Signal transduction depends on programmed assembly of cytokine receptors, receptor-associated JAK kinases, and in some cases serine kinases, that recruit and activate specific STAT proteins (2-4). Phosphorylated/activated STATs then dimerize, translocate to the nucleus, and direct transcription of specific target genes. For example, the first member of the STAT family (designated Stat1␣) undergoes tyrosine 701 and serine 727 phosphorylation in response to IFN-␥ (5). This activation step is triggered by IFN-␥-dependent oligomerization of the IFN-␥ receptor and consequent cross-phosphorylation of receptor-associated Jak1 and Jak2 kinases and the receptor ␣-chain (6). Receptor phosphorylation enables ␣-chain recruitment of Stat1 via its SH2 domain. Stat1 then undergoes phosphorylation and release from the receptor as a homodimer that can translocate to the nucleus and bind to a specific DNA element (7,8). Thus, distinct protein/protein interactions are critical for Stat1-dependent signal transduction events at the IFN-␥ receptor, but the nature of Stat1 interactions with other proteins (especially other transcription factors) in the nucleus is less certain. In the present report, we take advantage of a primary cell culture model with selective IFN-␥ responsiveness of the intercellular adhesion molecule-1 (ICAM-1) gene (9, 10) in order to study the basis for Stat1-dependent transcription. The results offer the first evidence that Stat1-mediated transactivation depends on synergistic interaction with another transcriptional activator (Sp1). EXPERIMENTAL PROCEDURESMaterials-Recombinant human IFN-␥ was from Genentech (San Francisco, CA); unlabeled dATP and dGTP were from Boehringer Mannheim; [␣-32 P]dCTP was from DuPo...
Francisella tularensis is an intracellular gram-negative bacterium that is highly infectious and potentially lethal. Several subspecies exist of varying pathogenicity. Infection by only a few organisms is sufficient to cause disease depending on the model system. Lipopolysaccharide (LPS) of gram-negative bacteria is generally recognized by Toll-like receptor 4 (TLR4)/MD-2 and induces a strong proinflammatory response. Examination of human clinical F. tularensis isolates revealed that human virulent type A and type B strains produced lipid A of similar structure to the nonhuman model pathogen of mice, Francisella novicida. F. novicida LPS or lipid A is neither stimulatory nor an antagonist for human and murine cells through TLR4 or TLR2. It does not appear to interact with TLR4 or MD-2, as it is not an antagonist to other stimulatory LPS. Consistent with these observations, aerosolization of F. novicida LPS or whole bacteria induced no inflammatory response in mice. These results suggest that poor innate recognition of F. tularensis allows the bacterium to evade early recognition by the host innate immune system to promote its pathogenesis for mammals.
Maintenance of membrane function is essential and regulated at the genomic, transcriptional, and translational levels. Bacterial pathogens have a variety of mechanisms to adapt their membrane in response to transmission between environment, vector, and human host. Using a well-characterized model of lipid A diversification ( Francisella ), we demonstrate temperature-regulated membrane remodeling directed by multiple alleles of the lipid A-modifying N -acyltransferase enzyme, LpxD. Structural analysis of the lipid A at environmental and host temperatures revealed that the LpxD1 enzyme added a 3-OH C18 acyl group at 37 °C (host), whereas the LpxD2 enzyme added a 3-OH C16 acyl group at 18 °C (environment). Mutational analysis of either of the individual Francisella lpxD genes altered outer membrane (OM) permeability, antimicrobial peptide, and antibiotic susceptibility, whereas only the lpxD1 -null mutant was attenuated in mice and subsequently exhibited protection against a lethal WT challenge. Additionally, growth-temperature analysis revealed transcriptional control of the lpxD genes and posttranslational control of the LpxD1 and LpxD2 enzymatic activities. These results suggest a direct mechanism for LPS/lipid A-level modifications resulting in alterations of membrane fluidity, as well as integrity and may represent a general paradigm for bacterial membrane adaptation and virulence-state adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.