This work investigates the system performance characteristics of centralized and decentralized strategies for air traffic separation. A centralized separation strategy and two decentralized separation strategies, implemented as constant-speed heading-change maneuvers, were simulated for randomized horizontal traffic patterns at various traffic densities. Human decision-making of controllers and pilots were not modeled. The centralized strategy represents a controller-oriented separation system generating coordinated resolution advisories that emphasize system-level stability. The decentralized strategies represent user-oriented separation systems generating independent resolution advisories that emphasize aircraft-level efficiency. Results from numerical experiments indicate that system stability and efficiency both degrade as traffic density increases, for all separation strategies. Although decentralized separation strategies can give rise to a significant domino effect, the resulting drop in system efficiency (relative to a centralized strategy that suppresses the domino effect) is quite small for traffic densities up to a certain threshold density. Introducing even a limited stability emphasis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.