We give an algorithm to morph between two planar orthogonal drawings of a graph, preserving planarity and orthogonality. The morph uses a quadratic number of steps, where each step is a linear morph (a linear interpolation between two drawings). This is the first algorithm to provide planarity-preserving morphs with well-behaved complexity for a significant class of graph drawings. Our method is to morph until each edge is represented by a sequence of segments, with corresponding segments parallel in the two drawings. Then, in a result of independent interest, we morph such parallel planar orthogonal drawings, preserving edge directions and planarity.
We give an algorithm to morph between two planar drawings of a graph, preserving planarity, but allowing edges to bend during the course of the morph. The morph uses a polynomial number of elementary steps, where each elementary step is a linear morph that moves each vertex in a straight line at uniform speed. Although there are planarity-preserving morphs that do not require edge bends, it is an open problem to find polynomial-size morphs. We achieve polynomial size at the expense of edge bends.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.