Aedes albopictus, commonly known as the Asian tiger mosquito, is currently the most invasive mosquito in the world. It is of medical importance due to its aggressive daytime human-biting behavior and ability to vector many viruses, including dengue, LaCrosse, and West Nile. Invasions into new areas of its potential range are often initiated through the transportation of eggs via the international trade in used tires. We use a genetic algorithm, Genetic Algorithm for Rule Set Production (GARP), to determine the ecological niche of Ae. albopictus and predict a global ecological risk map for the continued spread of the species. We combine this analysis with risk due to importation of tires from infested countries and their proximity to countries that have already been invaded to develop a list of countries most at risk for future introductions and establishments. Methods used here have potential for predicting risks of future invasions of vectors or pathogens.
Effective vector control, and more specifically mosquito control, is a complex and difficult problem, as illustrated by the continuing prevalence (and spread) of mosquito-transmitted diseases. The sterile insect technique and similar methods control certain agricultural insect pest populations in a species-specific, environmentally sound, and effective manner; there is increased interest in applying this approach to vector control. Such an approach, like all others in use and development, is not a one-size-fits-all solution, and will be more appropriate in some situations than others. In addition, the proposed release of pest insects, and more so genetically modified pest insects, is bound to raise questions in the general public and the scientific community as to such a method's efficacy, safety, and sustainability. This article attempts to address these concerns and indicate where sterileinsect methods are likely to be useful for vector control.
An important variable in determining the vectorial capacity of mosquito species for arthropod-borne infections is the degree of contact of the vector and the vertebrate reservoir. This parameter can be estimated by examining the host-feeding habits of vectors. Serological and polymerase chain reaction based methods have been used to study the host-feedings patterns of 21 mosquito species from New York, New Jersey, and Tennessee, 19 of which previously have been found infected with West Nile virus. Mammalophilic mosquito species in New Jersey and New York fed primarily upon whitetailed deer, while those from Memphis, Tennessee, fed mainly upon domestic dogs. A total of 24 different avian host species were detected among the avian-derived blood meals. American Robin, Northern Cardinal, Northern Mockingbird, Tufted Titmouse, and Brown-headed Cowbird were common avian hosts, while blood meals derived from the American Crow were relatively rare. Although the majority of common host species were potentially among the most abundant birds at each location, the proportion of blood meals from the most commonly fed upon avian species was greater than was predicted based upon the likely abundance of these species alone. These findings suggest that vector species for West Nile virus may preferentially feed upon certain avian hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.