1,2,4,5-Tetrazines have been established as effective dienes for inverse electron demand [4 + 2] Diels-Alder cycloaddition reactions with strained alkenes for over fifty years. Recently, this reaction pair combination has been applied to bioorthogonal labeling and cell detection applications; however, to date there has been no detailed examination and optimization of tetrazines for use in biological experiments. Here we report the synthesis and characterization of twelve conjugatable tetrazines. The tetrazines were all synthesized in a similar fashion and were screened in parallel to identify candidates most ideally suited for biological studies. In depth follow up studies revealed compounds with varying degrees of stability and reactivity that could each be useful in different bioorthogonal applications. One promising, highly stable and water soluble derivative was used in pre-targeted cancer cell labeling studies, confirming its utility as a bioorthogonal moiety.
Mutually orthogonal tetrazine–transcyclooctene and azide–cyclooctyne cycloaddition reactions were used simultaneously for the bioorthogonal labeling of two different live cell populations in the same culture. These small-molecule probes show good chemical reactivity and can be readily incorporated into biological systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.