Purpose: The pathways underlying basal-like breast cancer are poorly understood, and as yet, there is no approved targeted therapy for this disease. We investigated the role of mitogenactivated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) inhibitors as targeted therapies for basal-like breast cancer. Experimental Design: We used pharmacogenomic analysis of a large panel of breast cancer cell lines with detailed accompanying molecular information to identify molecular predictors of response to a potent and selective inhibitor of MEK and also to define molecular mechanisms underlying combined MEK and PI3K targeting in basal-like breast cancer. Hypotheses were confirmed by testing in multiple tumor xenograft models. Results: We found that basal-like breast cancer models have an activated RAS-like transcriptional program and show greater sensitivity to a selective inhibitor of MEK compared with models representative of other breast cancer subtypes.We also showed that loss of PTEN is a negative predictor of response to MEK inhibition, that treatment with a selective MEK inhibitor caused up-regulation of PI3K pathway signaling, and that dual blockade of both PI3K and MEK/extracellular signal^regulated kinase signaling synergized to potently impair the growth of basal-like breast cancer models in vitro and in vivo. Conclusions: Our studies suggest that single-agent MEK inhibition is a promising therapeutic modality for basal-like breast cancers with intact PTEN, and also provide a basis for rational combination of MEK and PI3K inhibitors in basal-like cancers with both intact and deleted PTEN.
Purpose: Elevated levels or increases in circulating tumor cells (CTC) portend poor prognosis in patients with epithelial cancers. Less is known about CTCs as surrogate endpoints or their use for predictive biomarker evaluation. This study investigated the utility of CTC enumeration and characterization using the CellSearch platform, as well as mutation detection in circulating tumor DNA (ctDNA), in patients with advanced non-small cell lung cancer (NSCLC).Experimental Design: Forty-one patients were enrolled in a single-arm phase II clinical trial of erlotinib and pertuzumab. Peripheral blood was analyzed for CTC enumeration, EGFR expression in CTCs, and detection of oncogenic mutations in CTCs and ctDNA. Changes in CTC levels were correlated with 2[18F]fluoro-2-deoxy-D-glucose-positron emission tomographic (FDG-PET) and computed tomographic (CT) imaging and survival endpoints.Results: CTCs were detected (1 CTC) at baseline in 78% of patients. Greater sensitivity for mutation detection was observed in ctDNA than in CTCs and detected mutations were strongly concordant with mutation status in matched tumor. Higher baseline CTC counts were associated with response to treatment by Response Evaluation Criteria in Solid Tumors (RECIST, P ¼ 0.009) and decreased CTC counts upon treatment were associated with FDG-PET and RECIST response (P ¼ 0.014 and P ¼ 0.019) and longer progression-free survival (P ¼ 0.050).Conclusion: These data provide evidence of a correlation between decreases in CTC counts and radiographic response by either FDG-PET or RECIST in patients with advanced NSCLC. These findings require prospective validation but suggest a potential role for using CTC decreases as an early indication of response to therapy and ctDNA for real-time assessment of mutation status from blood.
The basal-like subtype of breast cancer has an aggressive clinical behavior compared to that of the luminal subtype. We identified the microRNAs (miRNAs) miR-221 and miR-222 (miR-221/222) as basal-like subtype-specific miRNAs and showed that expression of miR-221/222 decreased expression of epithelial-specific genes and increased expression of mesenchymal-specific genes, and increased cell migration and invasion in a manner characteristic of the epithelial-to-mesenchymal transition (EMT). The transcription factor FOSL1 (also known as Fra-1), which is found in basal-like breast cancers but not in the luminal subtype, stimulated the transcription of miR-221/222, and the abundance of these miRNAs decreased with inhibition of the epidermal growth factor receptor (EGFR) or MEK (mitogen-activated or extracellular signal-regulated protein kinase kinase), placing miR-221/222 downstream of the RAS pathway. Furthermore, miR-221/222-mediated reduction in E-cadherin abundance depended on their targeting the 3' untranslated region of the GATA family transcriptional repressor TRPS1 (tricho-rhino-phalangeal syndrome type 1), which inhibited EMT by decreasing ZEB2 (zinc finger E-box-binding homeobox2) expression. We conclude that by promoting EMT, miR-221/222 may contribute to the more aggressive clinical behavior of basal-like breast cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.