Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.
Lignin is a major component of plant cell walls that is typically underutilized in selective conversion strategies for renewable fuels and chemicals. The mechanisms by which thermal and catalytic treatments deconstruct lignin remain elusive, which is where quantum mechanical calculations can offer fundamental insights. Here, we compute homolytic bond dissociation enthalpies (BDEs) for four prevalent linkages in 69 lignin model compounds, including β-O-4, α-O-4, β-5, and biphenyl bonds, with a large range of natural and oxidized substituents. These calculations include ab initio benchmark values extrapolated to the complete basis set limit and full conformational searches for each compound. The results quantify both the relative BDEs among common lignin bonds and the effect of native and oxidized substituents on the functional groups in lignin. These data yield insights into thermal lignin deconstruction for a large range of prevalent linkages and aid in the identification of targets for catalytic cleavage.
Acid catalysis has long been used to depolymerize plant cell wall polysaccharides, and the mechanisms by which acid affects carbohydrates have been extensively studied. Lignin depolymerization, however, is not as well understood, primarily due to the heterogeneity and reactivity of lignin. We present an experimental and theoretical study of acid-catalyzed cleavage of two non-phenolic and two phenolic dimers that exhibit the β-O-4 ether linkage, the most common intermonomer bond in lignin. This work demonstrates that the rate of acid-catalyzed β-O-4 cleavage in dimers exhibiting a phenolic hydroxyl group is 2 orders of magnitude faster than in non-phenolic dimers. The experiments suggest that the major product distribution is similar for all model compounds, but a stable phenyl-dihydrobenzofuran species is observed in the acidolysis of two of the γ-carbinol containing model compounds. The presence of a methoxy substituent, commonly found in native lignin, prevents the formation of this intermediate. Reaction pathways were examined with quantum mechanical calculations, which aid in explaining the substantial differences in reactivity. Moreover, we use a radical scavenger to show that the commonly proposed homolytic cleavage pathway of phenolic β-O-4 linkages is unlikely in acidolysis conditions. Overall, this study explains the disparity between rates of β-O-4 cleavage seen in model compound experiments and acid pretreatment of biomass, and implies that depolymerization of lignin during acid-catalyzed pretreatment or fractionation will proceed via a heterolytic, unzipping mechanism wherein β-O-4 linkages are cleaved from the phenolic ends of branched, polymer chains inward toward the core of the polymer.
Dehydration of neutral and protonated glycerol was investigated using quantum mechanical calculations (CBS-QB3). Calculations on neutral glycerol show that there is a high barrier for simple 1,2-dehydration, E(a)=70.9 kcal mol(-1), which is lowered to 65.2 kcal mol(-1) for pericyclic 1,3-dehydration. In contrast, the barriers for dehydration of protonated glycerol are much lower. Dehydration mechanisms involving hydride transfer, pinacol rearrangement, or substitution reactions have barriers between 20 and 25 kcal mol(-1). Loss of water from glycerol via substitution results in either oxirane or oxetane intermediates, which can inter-convert over a low barrier. Subsequent decomposition of these intermediates proceeds via either a second dehydration step or loss of formaldehyde. The computed mechanisms for decomposition of protonated glycerol are supported by the gas-phase fragmentation of protonated glycerol observed using a triple--quadrupole mass spectrometer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.