With [3H]ketanserin as the radioligand, structure-affinity relationships (SAFIRs) for binding at central 5-HT2 serotonin receptors (rat frontal cortex) were examined for a series of 27 4-substituted 1-(2,5-dimethoxyphenyl)-2-aminopropane derivatives (2,5-DMAs). The affinity (Ki values) ranged over a span of several orders of magnitude. It appears that the lipophilic character of the 4-position substituent plays a major role in determining the affinity of these agents for 5-HT2 receptors, 2,5-DMAs with polar 4-substituents (e.g. OH, NH2, COOH) display a very low affinity (Ki greater than 25,000 nM) for these receptors, whereas those with lipophilic functions display a significantly higher affinity. The results of these studies prompted us to synthesize and evaluate examples of newer lipophilic derivatives and several of these (e.g. n-hexyl, n-octyl) bind with very high (Ki values = 2.5 and 3 nM, respectively) affinities at central 5-HT2 sites. Although, 2,5-DMAs are generally considered to be 5-HT2 agonists, preliminary studies with isolated rat thoracic aorta suggest that some of the more lipophilic derivatives (e.g. the n-hexyl and n-octyl derivatives) are 5-HT2 antagonists.
1-(4-Bromo-2,5-dimethoxyphenyl)-2-aminopropane (DOB) is a serotonin (5-HT) agonist that displays a high affinity and selectivity for a certain population of central 5-HT binding sites (i.e., 5-HT2 sites). In the present study, (a) an enantiomeric potency comparison was made for the optical isomers of DOB and (b) the activity of N-monomethyl-,N,N-dimethyl-, and N,N,N-trimethyl-DOB was examined. (R)-(-)-DOB (Ki = 0.39 nM) was found to have 6 times greater affinity than its S-(+) enantiomer at [3H]DOB-labeled (rat cortical homogenates) 5-HT2 sites; N-methylation of racemic DOB resulted in a decrease in affinity that was at least 1 order of magnitude per methyl group. Similar results were obtained in an in vivo drug discrimination paradigm with rats as subjects and (R)-(-)-DOB (0.2 mg/kg) as the training drug. Thus, the R-(-) isomer of DOB is more active than its S-(+) enantiomer and than any of the possible N-methyl derivatives of DOB, both with respect to affinity at central 5-HT2 binding sites and with respect to potency in the behavioral (i.e., stimulus generalization) studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.