Schedule-induced polydipsia was used to determine the effects of selective serotonin re-uptake inhibitors on adjunctive water consumption. Polydipsia was induced in food deprived rats by exposure to a fixed time feeding schedule (FT = 60 s) for 150 min per day for 22 days. Selected polydipsic rats consumed 3-4 times greater volume of water compared to food deprived control rats. Chronic administration of the selective serotonin re-uptake inhibitors fluoxetine and clomipramine (CMI) at 5 mg/kg per day and fluvoxamine at 10 mg/kg twice a day significantly decreased schedule-induced polydipsia (SIP) on day 15 and throughout the remainder of the study compared to control rats. The noradrenergic re-uptake inhibitor, desipramine (DMI), only decreased SIP behavior on day 1. The neuroleptic, haloperidol (0.03 and 0.1 mg/kg), and the benzodiazepine, diazepam (2.5 mg/kg), failed to alter SIP behavior. Since obsessive-compulsive disorder (OCD) and polydipsic behavior both involve excessive expression of a normal behavior, the polydipsia model may be relevant for the prediction of compounds useful in the treatment of OCD.
A series of 3-[[(aryloxy)alkyl]piperidinyl]-1,2-benzisoxazoles was synthesized and evaluated as potential antipsychotic D2/5-HT2 antagonists. Most of these compounds showed potent antipsychotic-like activity in an apomorphine-induced climbing mouse paradigm, with many also showing preferential mesolimbic activity, as indicated by their weaker effects in an apomorphine-induced stereotypy model. In receptor binding assays, many displayed a moderate affinity for the D2 receptor coupled with a significantly greater affinity for the 5-HT2 receptor: a property that has been suggested as necessary for atypicality. From this series, compound 45, 1-[4-[3-[4-(6-fluoro-1,2-benzisoxazol-3-yl)-1- piperidinyl]propoxy]-3-methoxyphenyl]ethanone (iloperidone, HP 873), was further evaluated in a battery of in vivo and in vitro assays. This compound showed a 300-fold greater potency in inhibition of climbing than in inhibition of stereotypy or induction of catalepsy, and when evaluated chronically in an electrophysiological model, 45 caused a depolarization blockade of dopamine neurons in the A10 area of the rat brain but not in the A9 area. Additionally, it showed positive activity in a social interaction paradigm, suggesting potential efficacy against asociality, a component of the negative symptoms of schizophrenia. In chronic ex vivo studies, 45, similar to clozapine, caused a down regulation of 5-HT2 receptors but had no effect on the number of D2 receptors. Compound 45 is currently undergoing clinical evaluation.
The synthesis of a series of 9-amino-1,2,3,4-tetrahydroacridin-1-ols is reported. These compounds are related to 1,2,3,4-tetrahydro-9-acridinamine (THA, tacrine). They inhibit acetylcholinesterase in vitro and are active in a model that may be predictive of activity in Alzheimer's disease--the scopolamine-induced impairment of 24-h memory of a passive dark-avoidance paradigm in mice. Two compounds, (+/-)-9-amino-1,2,3,4-tetrahydroacridin-1-ol maleate (1a, HP-029) and (+/-)-9-(benzylamino)-1,2,3,4-tetrahydroacridin-1-ol maleate (1p, HP-128), were also active in reversing the deficit in 72-h retention of a one-trial dark-avoidance task in rats, induced by ibotenic acid lesions in the nucleus basalis magnocellularis. In addition, compound 1 p showed potent in vitro inhibition of the uptake of radiolabeled noradrenaline and dopamine (IC50 = 0.070 and 0.30 microM, respectively). Compounds 1a and 1p, which showed less acute toxicity in both rats and mice than THA, are in phase II and phase I clinical trials, respectively, for Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.